подводной лодки. Некоторое время лодка находилась на поверхности, а затем ушла в воду. Спустя еще какое-то время моряки заметили два перископа, рассекавших волны неподалеку от них. Затем и перископы исчезли.
Спасение к морякам пришло лишь на следующее утро, когда их случайно обнаружил японский военный корабль. Власти начали расследование и быстро установили, что подводных лодок японского ВМФ в районе катастрофы быть не могло. Американские союзники Японии также с ходу отвергли свою причастность к инциденту. Назревала версия «о неизвестной» (читай советской) подводной лодке.
Однако вечером того же дня посол США в Японии внес ясности в существо дела: «Ниссиомару» протаранил подводный ракетоносец «Джордж Вашингтон», осуществлявший боевое патрулирование в позиционном положении. Шила в мешке не утаишь – американское командование было вынуждено начать расследование, в ходе которого выявилась неприглядность инцидента во всех аспектах.
Согласно докладу ВМС США, «предупредительный сигнал о приближении японского грузового судна либо не был услышан, либо его не сумел распознать офицер, командовавший в тот момент подводной лодкой».[108] Но как могло случиться, что современная подводная лодка, находящаяся к тому же на боевом патрулировании (т.е. в состоянии повышенной боеготовности), не смогла обнаружить движущийся объект впереди по курсу – этот вопрос остался в докладе без ответа.
После столкновения на лодке безусловно видели последствия своей беспечности, однако помощь японским морякам все же оказана не была. Их бросили на произвол судьбы, даже не сообщив о случившемся другим судам, которые могли спасти потерпевших бедствие.
Спустя два месяца стало известно, что командование ВМС США отстранило от должности командира подводного ракетоносца и вахтенного офицера и объявило им выговоры. [109] Тем самым их вина была признана, хотя последовавшее «наказание» явно не соответствовало тяжести преступления.
В 1988 г. другое японское рыболовное судно также было протаранено подводной лодкой – на этот раз ВМС Японии. Несмотря на оперативно начатые спасательные работы, из 48 рыбаков погибли и пропали без вести 30.[110]
В последние годы участились также редкие ранее случаи столкновений лодок в подводном положении. Если даже для рокового пересечения курсов двух судов на поверхности (т.е. на плоскости) требуется неблагоприятное стечение обстоятельств, то тем менее вероятно одновременное нахождение двух подводных лодок в одной точке трехмерного пространства. И все-таки они в этой точке сходятся!
В октябре 1957 г. в 100 милях от Нью-Лондона столкнулись под водой американские дизель- электрические подводные лодки «Коблер» и «Таек». Лодки всплыли на поверхность и своим ходом пришли на базу для ремонта.
В конце 1958 г. при маневрировании под водой столкнулись дизель-электрическая лодка «Кьюбера» (также типа «Балао») и атомная «Скейт». По сообщениям зарубежной печати, последняя получила достаточно серьезные повреждения.[111]
13 октября 1965 г. в 15 милях от острова Оаху (Гавайские острова) произошло столкновение маневрировавших в подводном положении атомных подводных лодок «Барб» и «Сарго». На одной из лодок оказалась повреждена носовая оконечность, а на другой – ограждение выдвижных устройств.[112] Атомные подводные лодки «Гэтоу» в ноябре 1969 г. и «Пинтадо» в мае 1974 г. в подводном положении столкнулись с дизель-электрическими подводными лодками.[113]
Необычное столкновение произошло 4 февраля 1977 г. в 250 милях к юго-западу от Сан-Диего (штат Калифорния). Участниками его были американская атомная подводная лодка «Снук», которая шла на большой глубине, и буксируемая гидроакустическая станция сторожевого корабля «Бэгли». При ударе станции в корпус лодки на ней были повреждены выдвижные устройства и их ограждение.[114]
В чем же причина участившихся в последние годы подводных столкновений? Искать ее, как это ни парадоксально, следует в улучшении характеристик гидроакустических станций и снижении шумности подводных лодок. Получив в свое распоряжение более совершенные приборы подводного наблюдения, командиры лодок на маневрах и учениях стали активнее искать подводные цели (подводные лодки условного противника) и маневрировать в непосредственной от них близости, а пониженная шумность этих кораблей и специальные приемы уклонения от обнаружения обусловили возможность потери контакта и, как следствие, случайные столкновения ЛОДОК ПОД ВОДОЙ.
Новая техника – новые неприятности
Отказы технических средств далеко не всегда ведут к «традиционным» (и наиболее опасным) авариям подводных лодок, связанным с поступлением внутрь прочного корпуса забортной воды или провалом их за допустимую глубину.[115] Значительно более многочисленны выходы из строя различных механизмов и приборов, которые, на первый взгляд, не представляют непосредственной угрозы безопасности корабля и его экипажа, однако при определенных обстоятельствах могут также иметь трагические последствия.
Сведения о подобных авариях далеко не всегда проникают на страницы зарубежной печати, поскольку их, как правило, достаточно легко утаить от журналистов и, следовательно, от общественности (особенно, если при этом не было человеческих жертв). Поэтому подробный анализ таких происшествий практически неосуществим, и лишь откровения отдельных подводников (например, воспоминания командиров американских атомных подводных лодок о походах к Северному полюсу) дают общее представление о надежности лодочного оборудования.
Создание абсолютно безотказных технических средств, как уже отмечалось, в принципе невозможно. Однако по мере отработки конструкций механизмов и приборов, освоения их в производстве и эксплуатации вероятность отказов оборудования неуклонно снижается. В последние годы меры по повышению безотказности лодочного оборудования (как и любых других технических средств) перестали быть чисто эмпирическими и получили научную основу в виде специальной прикладной дисциплины – теории надежности. Степень безотказности оборудования теперь не только проверяется в процессе эксплуатации, испытаний, в том числе ускоренных, но и прогнозируется, задается требованиями на разработку новых образцов техники, «закладывается» в проекты.
Вместе с тем отказы технических средств на подводных лодках не прекращаются, что объясняется двумя обстоятельствами.
1. Постоянным внедрением на них новых механизмов и приборов, для которых, вновь повторяется процесс освоения техники с неизбежным возрастанием интенсивности отказов.
2. Усложнением конструкции подводных лодок и увеличением насыщенности их разнообразным оборудованием: энергетическим, электрическим, электронным, что ведет к увеличению числа отказов даже при повышении безотказности каждого отдельно взятого элемента, узла, прибора, механизма.
Значительное число аварий происходило на подводных лодках США, Англии и Франции в период внедрения атомных энергетических установок.
Еще в ходе постройки первой американской атомной подводной лодки «Наутилус» во время испытаний энергетической установки произошел разрыв трубопровода второго контура, по которому насыщенный пар с температурой около 220°С под давлением 18 атм поступал из парогенератора к турбине. К счастью, это был не главный, а вспомогательный паропровод диаметром 38 мм.
Причиной аварии, как установлено в процессе расследования, был производственный дефект: вместо труб из качественной углеродистой стали марки А-106 в паропровод включили трубы из менее прочного материала (А-53), к тому же сварные (технические условия обработки стали А-53 предусматривают возможность изготовления из нее как бесшовных, так и сварных труб, в то время как трубы из стали марки А-106 допускается производить только бесшовными).