правда, длинных нанотрубок никто не получал.

И наконец, в 2004 году выпускники подмосковного Физико-технического института Андрей (Андре) Гейм и Константин Новосёлов получили последнюю на данный момент аллотропическую модификацию углерода — одномерные пленки под названием «графен». Этот графен не что иное, как один корж из того самого торта «Наполеон», один слой в графите. Есть такое выражение: в мире нет ничего более плоского, чем графен. За открытие этого поразительного по своим свойствам вещества Гейм и Новосёлов получили в 2010 году Нобелевскую премию. Графен прочнее стали в 200 раз, обладает необычными электрическими свойствами и в перспективе сможет заменить дорогой кремний при производстве электронных компонентов. Из графена уже научились делать прозрачные ленты, и революция в электронике не за горами.

Графен был теоретически предсказан еще в 1950-е годы, но получить его никак не удавалось. Удивительно, но Гейм и Новосёлов сделали это, используя обыкновенную клейкую ленту скотч. Они приклеивали скотч к куску графита, отдирали прилипшие кусочки и исследовали их под микроскопом. В массе кусочков попадались и двухслойные, и однослойные пленки, которые наши соотечественники и исследовали.

В этой книге рассказывается не просто об интересных химических веществах и реакциях, но и об открывших эти вещества ученых. Поэтому, рассказывая про Гейма, Новосёлова и графен, нельзя не вспомнить их коллегу физика Сергея Дубоноса. Он работал в группе Гейма, защитил кандидатскую диссертацию, но главное — лучше всех и даже первым сумел отшелушить графен от графита. А потом бросил физику и уехал в Заокский район Тульской области, начал выращивать коз и ныне совершенно счастлив. Лучший друг Гейм звал его в Стокгольм на церемонию вручения премии, но Сергей Дубонос хотел поехать с детьми — им это было бы интересно, а ему не очень. Но столько билетов на церемонию не было, вот он и остался у себя на ферме. И собирается выучиться на краснодеревщика.

А Гейм и Новосёлов уехали за границу, работают в одном из крупных научных центров Великобритании. Ну что ж, это нормально, ученый и должен жить там, где ему предоставляются наилучшие условия для работы. И это далеко не первый случай. Кстати, касающийся именно Великобритании. Речь идет о великом русском химике Владимире Николаевиче Ипатьеве и «битве за Англию». Об этом — в главе 11, а сейчас расскажем о химике, который первым сообразил, как именно образуются цепочки углерода, как устроены органические вещества и почему вещества с одним и тем же количеством атомов, и не только углерода, проявляют разные, часто даже абсолютно разные свойства.

Структура Бутлерова

Александр Михайлович Бутлеров родился в 1828 году, учился в Казанском университете, после отъезда Карла Клауса в город Дерпт (о Карле Карловиче — в главе 14) возглавил преподавательский корпус химии в Казанском университете и в 1861 году впервые огласил на Съезде немецких естествоиспытателей и врачей свою теорию строения органических соединений. Сейчас ее положения показались бы очевидными, однако, как ни странно, до Бутлерова ученых как-то мало занимал хорошо известный сегодня факт, что химические и физические свойства любого индивидуального вещества зависят не только от его состава, то есть количества тех или иных атомов, но и от того, в каком порядке «собрана» молекула вещества из этих атомов, — то есть от строения молекулы. А как же иначе, спросите вы? А вот так: до Бутлерова вещество (точнее, молекулу вещества) считали этаким мешком, в который насыпали столько-то атомов углерода, столько-то азота, столько-то кислорода и так далее. Мешок потрясли и получили вещество.

Хотя само явление изомерии было обнаружено еще Юстасом Либихом в 1823 году, но не в случае органических веществ, а при изучении серебряных солей гремучей и изоциановой кислот. Либих сумел выяснить, что гремучее серебро Ag-O-N=C (или фульминат серебра) и изоцианат серебра Ag-N=C=O имеют одинаковый состав и совершенно различные свойства. Правда, написать формулы таким образом он не мог, в те времена еще не существовало методов установления химического строения, да не было и самих формул с использованием «черточек», обозначающих химические связи. Просто Либих получил гремучее серебро и изоцианат серебра в результате реакций с использованием различных соединений, но выделил два продукта одинакового, как теперь говорят, брутто-состава. Через несколько лет после Либиха сам великий Берцелиус ввел понятие изомерии (от греческого слова, означающего «равнодольные»).

И только Бутлеров сумел разобраться в этом вопросе и объяснил явление изомерии, пояснить которое проще всего на примере углеводорода бутана.

Углеводороды, соединения только атомов углерода и водорода, имеют главную и побочную цепь связанных между собой атомов углерода начиная от простейшего метана СН4. Затем следует этан С2Н6, за ним пропан С3Н8, бутан С4Н10 и так далее, вплоть до углеводородов с числом атомов углерода 100 и более. Да, кстати, здесь речь идет о предельных углеводородах, в которых все связи углерод-углерод одинарные. Так вот, формулу пропана можно записать только так: СН3-СН2- СН3, у пропана изомеров нет. А вот у бутана C4H10 уже два изомера: СН3-СН2-СН2-СН3 (линейный изомер) и СН3-СН2(СН3) — СН3. Скобка означает, что метильная группа СН3, как ветка у дерева, направлена в сторону от главной цепи — это разветвленный изомер. То есть изомеры имеют одинаковый состав, но разное строение и соответственно разные химические и физические свойства. Например, тот же линейный изомер бутана (нормальный, н-бутан) имеет температуру плавления -138 °C, а его изомер изо-бутан плавится при -160 °C.

Лучшим доказательством справедливости любой теории, хоть химической, хоть в области общественных явлений, является правильное предсказание. Справедливость структурной теории Бутлерова была доказана еще им самим, когда он предсказал существование четырех различных изомеров бутилового спирта (бутанола), различающихся по своим физическим и химическим свойствам. Ко времени создания теории был известен лишь один бутанол: (CH3)2CHCH2OH. А Бутлеров предсказал и написал формулы еще трех бутанолов: CH3CH2CH2CHOH, CH2CH(CH3)CHOH и (CH3)3COH. Вскоре эти изомеры были синтезированы, и теория блестяще подтвердилась.

Братья цис и транс

Со времен Бутлерова открыт целый ряд других видов изомерии, в частности самая утонченная цис- транс-изомерия. Представим себе молекулу этилена CH2=CH2. Теперь по одному атому водорода у каждого из углеродов заместим на какую-нибудь группу, хоть на тот же простейший метил CH3-. Получим CH3-CH=CH-CH3. Эти группы, как и оставшиеся атомы водорода, все лежат в одной плоскости, по оси которой расположена двойная связь. И у метильных групп появляется возможность расположиться либо по одну сторону от этой двойной связи, либо по разные стороны. Если бы связь была одинарная, то никакой разницы не было бы, вокруг этой связи группы CH3- могут «вращаться» — и мысленно, и на самом деле. Для двойной связи так не проходит, и мы получаем два изомера диметилэтилена. Если по разные стороны — это транс-изомер. Одна из групп как бы переехала (транспортировалась) на другую сторону от двойной связи. «Транс» по-латыни — это «через», «за». Если по одну сторону — это цис-изомер. Приставка «цис-» так и переводится с латыни — «по одну сторону». (Раньше ближневосточная страна Иордания называлась Трансиорданией, то есть «за рекой Иордан». Иорданией эта страна стала называться только после первой войны с Израилем, когда Трансиордания захватила кусок Палестины за рекой Иордан и старое название потеряло смысл. Эти территории, уже не принадлежащие Иордании, называются сейчас Западным берегом реки Иордан или Палестинской автономией, а иногда используется термин Цисиордания.)

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×