поскольку природные процессы продолжают развиваться.
Из многих выдвинутых предложений по спасению Венеции выделяются два проекта.
Один из них заключается з том, чтобы установить огромные плавучие плотины в каналах между лагуной и Адриатическим морем. При наводнении эти плотины можно закрепить и тем самым отвратить повышение уровня воды в городе. Единственным недостатком этого проекта является резкое сокращение приливно-отливной очистки каналов Венеции, что до настоящего времени спаслло город от засорения отбросами, которые просто спускаются в каналы. Поэтому в стоимость этого проекта должны входить расходы на сооружение современной очистной системы для всего города. Надо отметить, что этот план направлен на защиту от воды, а не на предотвращение проседания, которое в будущем потребует все более частого закрытия плотин, т. е. возможной изоляции лагуны.
Другой, более смелый, проект предусматривает фактическое приподнятие всего города. В дно лагуны предлагается врыть стену глубиной около 100 м и длиной 13 км, которая полностью окружала бы город. Она должна изолировать водоносные, горизонты в песчаных осадках, залегающих непосредственно под городом, от их продолжений под остальной частью лагуны, поскольку песчаные пласты, по существу, горизонтальны и подстилаются водонепроницаемыми глинами. Затем воду следует накачивать обратно в водоносные горизонты, что повысит давление поровых вод. В результате город приподнимется, поскольку осадки снова расширятся, по крайней мере до своего прежнего объема. Правда, могут возникнуть определенные трудности; например, замедление движения грунта при трении о стену может обусловить куполообразное выгибание территории города. Однако этот план все же дает лучшее решение проблемы, чем первый, и опыт Лос-Анджелеса по закачке воды показывает, что такой проект может сработать. Если же этого не произойдет, Венеция будет медленно опускаться до тех пор, пока совсем не исчезнет под водами своей знаменитой лагуны.
Город Мехико расположен весьма живописно: он раскинулся в широкой котловине с плоским дном на 2257 м выше уровня моря и окружен горами. Котловина имеет длину более 80 км и среднюю ширину 24 км. Она пересекается множеством небольших речек. Плоская форма дна котловины обусловлена мощным слоем подстилающих осадков, представленных грубозернистыми песками, перекрытыми тонкозернистыми глинами. Геологический разрез этого района имеет следующее строение.
Нижняя пачка песков и галечников прослеживается до глубины 500 м; ее обломочный материал представлен главным образом вулканическими андезитами. Эти отложения являются высокопродуктивным водоносным горизонтом. Залегающие выше две мощные пачки верхнеплейстоценовых глин сходны между собой; они представлены бентонитами, т. е. состоят главным образом из монтмориллонита с небольшой примесью других глинистых минералов, а также глинистых алевритов. Хотя все глинистые минералы имеют некоторую способность удерживать воду благодаря слабым электрическим связям, монтмориллонит проявляет это свойство сильнее всех. При увеличении в тысячи раз под электронным микроскопом можно видеть, что кристаллическая структура монтмориллонита состоит из полых трубочек, похожих на макароны, которые и придают монтмориллониту способность абсорбировать воду.
Верхний слой глины имеет среднюю пористость 88 %, а нижний — около 82 %. Другими словами, 88 % (или 7/8) верхнего слоя мягкой глины — это вода, и только 12 % —твердый минеральный материал. Тот факт, что вода в глинистых минералах связана (хотя и очень слабо), означает, что этот материал представляет собой не просто жидкую грязь, а является очень мягким, пластичным веществом. На такой породе не следовало бы строить большой город. К сожалению, все это стало известно через много лет после того, как город Мехико был построен.
Проседание Мехико впервые было отмечено в XIX веке; в это время как раз была усилена откачка воды из скважин, пройденных в высокопродуктивных песчаных водоносных горизонтах, залегающих ниже 50-метровой отметки. К 1959 г. часть города осела на 4 м, максимальное проседание составило 7,6 м. Скорость опускания в настоящее время заметно увеличилась, поскольку город растет, а следовательно, растет и откачка воды. С 1898 по 1938 г. ежегодное проседание в среднем составляло 4 см, за следующие 10 лет оно увеличилось до 15 см, в период 1948–1952 гг. достигло 30,5 см, а местами даже превысило 60 см. К 1948 г. стало ясно, что причиной проседания Мехико является добыча воды, но еще многие годы после этого существовало более 3000 скважин, поивших растущий город и одновременно подтачивавших его фундамент.
Артезианский напор в главных водоносных горизонтах до выкачивания воды располагался примерно на уровне поверхности грунта, в конце 50-х годов XX века он понизился на 20–30 м. Очевидно, падение гидростатического давления в песках и галечниках произошло очень быстро, но при крайне низкой проницаемости перекрывающих слоев глины вода через них просачивалась очень медленно. Это связывание воды глиной в данном случае имело благоприятные последствия, поскольку оно замедлило общее падение давления и, следовательно, проседание грунта. В результате проседания многие обсадные трубы скважин вышли на поверхность. Так, одна из скважин, пробуренная до глубины 90 м, была остановлена, причем ее обсадная труба находилась на уровне поверхности земли. К 1954 г. этот район опустился на 6 м, а обсадная труба выступила из грунта на 5,5 м. Это ясно показывает, что почти все проседание было обусловлено уплотнением верхних 90 метров осадков.
К сожалению, выход обсадных труб на земную поверхность — не единственное последствие проседания Мехико. Были повреждены здания, сильно пострадали водопровод и осушительные каналы, особенно в тех местах, где шло неоднородное проседание, вызванное разной нагрузкой. Пожалуй, самым печальным последствием проседания было повреждение великолепного Дворца изящных искусств, находящегося в самом центре города. Строительство дворца началось в 1904 г. и было закончено только в 1934 г. Если фундаментом служила бетонная площадка толщиной 3 м, верхняя часть которой находилась на уровне поверхности земли. Еще до того момента, когда началось строительство, бетонный настил заметно прогнулся посредине и во время возведения здания он все больше проседал, погружаясь в землю. К 1908 г. частично построенное здание опустилось более чем на 1,5 м, а через два года в фундаменте появилась трещина. В 1910 г. была сделана попытка стабилизировать дворец, и в подстилающий слой глины было залито в виде жидкого раствора 70 000 мешков цемента. Однако мелкозернистая структура глины не позволяла раствору распределиться однородно, и вместо цементирования и стабилизации произошло следующее: цементный раствор осел в виде сгустков и сообщил дополнительную нагрузку на глину, что, вероятно, ускорило дальнейшее проседание.
Через 5 лет вокруг дворца были забиты стальные сваи, так как предполагали, что опускание обусловлено боковым смещением глины под влиянием нагрузки. Однако эти меры тоже оказались бесплодными, ведь глина не съехала, а просто уплотнилась вследствие просачивания воды вниз. Несмотря на это строительство продолжалось, и уже возведенный дворец все больше погружался в землю. Сейчас он опустился более чем на 3 м ниже уровня окружающих улиц. Неоднородность проседания обусловлена гигантским весом дворца. Чтобы попасть на его первый этаж, надо спуститься по ступеням, ведущим вниз. Более легкие дверные арки погрузились меньше и поэтому оторвались от главного здания. Проезжие части окружающих дворец улиц растрескались и приобрели наклон по направлению к дворцу.
Подведение соответствующих несущих конструкций, опирающихся на песчаные породы, залегающие на глубине 33,6 м, быстро остановило бы проседание Дворца изящных искусств. Этот инженерный проект вполне осуществим. Забивка глубоких свай применялась при постройке многих современных зданий в городе. Но эти сваи, как и обсадные трубы скважин, со временем начинают выступать над поверхностью земли — по мере того, как продолжается проседание окружающих улиц. Поэтому такой способ не дает в Мехико полного решения проблемы. Необходимо остановить проседание, ликвидировав его причину, а для этого надо сократить откачку вод. В 1952 г. начали подводить воду к городу, извлечение грунтовых вод было остановлено, а на следующий год стали закачивать воду обратно в обезвоженные, ранее водоносные горизонты. В результате к 1974 г. проседание города уменьшилось до 2,5 см в год, что уже вполне приемлемо. Прекрасным образцом инженерного решения проблемы борьбы с проседанием грунтов является Латиноамериканская башня. Это 43-этажное административное здание, построенное в 1951 г., было установлено на сваях, которые на 34 м погружены в грунт и достигают толщи песчаника. В окружающем здание районе вода из глин не откачивается, и породы поэтому не испытывают дополнительного уплотнения. Латиноамериканская башня расположена всего в одном квартале от Дворца изящных искусств, однако вход в нее соответствует уровню земли.