Тяжек был труд твоего землепашца на поле:
Три лишь зерна на зерно получал с урожая.
Ости одни и колючки подчас пожиная,
Пану оброк семикратный он нес, проклиная…
Так на груди твоей издавна предки трудились,
Вечную муку до ран на руках принимая…
Неизвестные сотрудники
Очень долгое время мы ничего о них не знали. Землепашцы испокон веков рыхлили землю, сеяли и собирали урожай. Потом наступила эпоха микробиологических исследований и почвоведения и понемногу стала проясняться судьба различных соединений в почве, их круговорот в природе. И человек постепенно узнавал о неизвестных и невидимых сотрудниках из мира микроорганизмов. Так, мы узнали, что именно они— основные поставщики углекислого газа в атмосферу, откуда его в процессе фотосинтеза усваивают растения, добывая пищу для гетеротрофных организмов, в том числе и для человека. Среди микробов мы открыли фиксаторов и преобразователей азота и его соединений, являющихся необходимыми элементами питания всех организмов. Соединения азота, серы, фосфора и большую часть биогенных элементов растения получают в почве прежде всего благодаря деятельности микроорганизмов.
И теперь, окидывая взором поле с созревающим урожаем той или иной сельскохозяйственной культуры, мы знаем, что его обеспечивают многие миллионы микробных клеток, находящихся в почве, где они неустанно, невидимо для нас выполняют свою жизненную задачу. Здесь мы найдем представителей всех групп микроорганизмов, и почвенная микробиология может дать нам в цифрах наглядное представление об их составе в 1 г почвы:
Рассмотрим роль почвенных микроорганизмов в сельском хозяйстве и их значение для поддержания жизни на нашей планете.
Круговорот углерода в природе
Мы уже знаем, что в процессе фотосинтеза растения поглощают из атмосферы углекислый газ и из него и воды при обязательном участии световой энергии вырабатывают сахара. Дальнейшая судьба полученных сахаров может быть различной. В клубнях картофеля и зернах хлебных злаков из сахаров образуется крахмал. В семенах некоторых растений накапливаются масла. В конопле и хлопчатнике образуются волокна, используемые в текстильной промышленности. Образующиеся в хлоропластах сахара служат, кроме того, вместе с другими веществами материалом для построения различных органов растения.
Биогенный элемент углерод, входящий в состав углекислого газа и сахаров, находится в природе в постоянном круговороте. Если бы его запасы в атмосфере не пополнялись, их хватило бы для жизни растений всего лет на сорок. Процесс фотосинтеза прекратился бы, и как следствие этого наступил бы конец жизни на Земле. Однако мы знаем, что запасы углекислого газа в воздухе постоянно восполняются. Он поступает в атмосферу из вулканических газов, минеральных вод, освобождается при выветривании горных пород и сгорании древесины, угля, торфа, горючих газов и нефтяных продуктов. Живые организмы возвращают его в атмосферу при дыхании. Микробы также честно выполняют свою роль поставщика этого драгоценного продукта — участвуют в разложении остатков животных и растений, минерализуя органические соединения. Можно считать, что бактерии и грибы при дыхании выделяют в атмосферу больше углекислого газа, чем все люди и животные, вместе взятые.
Растения относятся к автотрофным организмам, для питания которых достаточно лишь усвоения углекислого газа, в отличие от гетеротрофов, принимающих углеродную пищу только в форме готовых органических соединений. Мы уже знаем, что автотрофными являются и многие микроорганизмы. Кроме зеленых, диатомовых и сине-зеленых водорослей, нам известны специализированные автотрофные бактерии, использующие для получения и усвоения углекислого газа химическую энергию, которая освобождается в результате реакций, происходящих в неорганических соединениях. Из таких автотрофных почвенных бактерий наиболее известны нитрифицирующие бактерии, которые играют чрезвычайно важную роль в круговороте другого биогенного элемента — азота.
Потребность в азоте
Азот — важный биогенный элемент, присутствующий в каждой живой клетке. В азоте нуждаются все живые организмы, но добывают они его по-разному. Животные получают азот из растительной пищи. Зеленые растения черпают его из почвы в форме минеральных соединений. Газообразный азот, находящийся в атмосфере, для зеленых растений недоступен. Своими надземными органами они буквально купаются в атмосферном азоте, но использовать его не могут. В результате электрических разрядов в атмосфере возникает небольшое количество соединений азота, в частности аммиак; они проникают в почву с дождем и могут служить растениям источником азота. Но на 1 га почва получает таким путем лишь около 3 кг азота в год, тогда как с урожаем мы получаем его с этой же площади раз в 20 больше.
В 1 га почвы содержится около 8000 кг азота, большая часть которого связана с живущими в ней организмами. Если бы растениям был доступен весь находящийся в почве азот, то, например, сахарная свекла исчерпала бы его за 40 лет. И хотя запасы азота в почве невелики, они постоянно пополняются, причем главная роль в этом процессе принадлежит почвенным микроорганизмам.
Мертвые животные и растения очень скоро становятся жертвой микробов, которые используют в процессе своей жизнедеятельности эти богатые запасы органических соединений. Одни микробы выделяют ферменты, осуществляющие разложение белков на их составные части — аминокислоты (но процесс разложения на этом не останавливается). Другие микробы под действием ферментов освобождают из аминокислот углекислый газ, большая часть которого возвращается в атмосферу, и аммиак, остающийся в почве. Микробы освобождают аммиак и из выделений различных животных. Процесс, при котором в результате жизнедеятельности микробов из белков и других органических соединений выделяется аммиак, называется аммонификацией. Пахотная почва, в которой находятся растительные остатки, навоз, отмершие мелкие животные и микробы, всегда содержат аммиачные соединения.
Хвойные древесные породы своими корнями поглощают аммиачные соединения из почвы и используют их для образования аминокислот и белков. Так азот, связанный в аммиаке, снова возвращается в живую природу.
В более трудном положении находятся растения, неспособные усваивать аммиак. Они могут использовать только азот, содержащийся в нитритах или нитратах. Но и этим растениям на помощь приходят микробы.
Бактерии, открытые Виноградским