We’ve already seen how subgoals can be connected to serve our goals—the way that
However, this image tells us nothing about how those processes actually work, so we need to construct some theories about how attachment works to ‘elevate’ goals. First, this must depend on circuits that recognize when the praise comes from an imprimer:
That’s because, as we noted in §2-3, we would all be in danger if praise, alone, could cause our brains to elevate goals—because then any stranger could program us by suggesting new goals and then praising us.
One feature of human diversity is that we can learn the same things in different ways—and any psychological event is likely to have several causes. If attachment-based learning exists, it is only one part of the story.
Indeed this idea is incomplete. There is no use to learning something new unless one also has ways to retrieve it when it is relevant. This raises many questions like these:
There are no simple answers to these, because all those issues must involve much of the rest of our mental machinery. Nevertheless, it is hard to see how to think about such things without a set of ideas about ‘levels’ of mental activities. Our brains have many systems that learn—and as these develop over the years, they may tend to form roughly hierarchical structures, because each fragment of newly acquired knowledge is built upon things that we’ve learned before.
For example, in the course of everyday thinking, you need to constantly control the “level of detail” of descriptions. When a plan seems to be working successfully, you’ll want to “descend” to work out details—but when you seem to be getting stuck, you’ll want to ‘look up’ to a higher-level overview, instead of investing time on subgoals that may not be relevant. [See §§Level-Bands]
§2-5. Learning and pleasure
When Carol was trying to fill her pail, she had to try several experiments before she succeeded by using her spoon. When she recognized that her goal was achieved, she felt satisfaction and a sense of reward—and then those pleasant feelings somehow helped her to learn and remember. So this process involved a good many steps:
Now we’re glad that she felt gratified—but what functions did all those feelings serve, and why should that process take so many steps? What sort of role might pleasure play in how we construct our memories? Why couldn’t Carol just simply remember which methods worked and which ones failed?
The answer is that ‘remembering’ is not simple at all. On the surface, it might seem easy enough—like dropping a note into a box, and then taking it out when you need it. But when we look more closely at this, we see that it involves a good many steps: You first must select which items that note should contain, and find adequate ways to represent them—and then you must give them some set of connections, so that after you store those parts away, you’ll be able to reassemble them.
This ‘photographic memory’ myth is not supported by evidence; the consensus from many experiments is that we don’t remember nearly so much. [See
That is a simplistic way to describe how learning might work, when seen from outside—but it doesn’t explain what might happen inside. For, neither
Thus, for Carol to learn, her brain must construct some descriptions of which methods worked—as well as, perhaps, of which methods failed. But after her struggle to fill her cup, which of all the things she did should get credit for her final success? Should Carol attribute her success to which pair of shoes she was wearing then, or the place in which that event occurred, or whether the weather was cloudy or clear? What if she smiled while using that fork, but happened to frown when using that spoon; what keeps her from learning irrelevant rules like,
In other words, when humans learn, it is not just a matter of making connections but of constructing the structures that those connections connect—and no theory of learning can be complete unless it also accounts for this. Furthermore, we may need to represent not only those external events, but also some relevant