x . .
p>
p>
Заменим ж на к или к и получим тот же результат. Покажите самостоятельно, что в конце концов получаются следующие схемы
p>
p>
p>
p>
p>
Вам остается расставить сначала
Эффект впечатляющий. Здесь мы можем правильно оценить истинную природу комбинаторных задач. Они сложны — иначе говоря, они требуют много времени для вычислений (именно в этом смысле и употребляется слово «сложный» в информатике). Предварительное доказательство подходящих свойств позволяет избежать слишком большого числа попыток и, следовательно, уменьшить сложность. Остается только найти эти хорошие свойства…
Головоломка 26.
Пентамино является другим примером этого утверждения. Общая идея решения проста, если учесть все то, что вы уже сделали. Вы рассматриваете прямоугольную область, которая должна быть покрыта различными кусочками и в начале игры должна быть обозначена вами как пустая,
Вы можете действовать двумя способами: — рассматриваете первое свободное поле и ищете кусок, который можно туда поместить;
— берете первый, еще не использованный кусок и пытаетесь поместить его на игровое поле.
Кусок может быть по-разному ориентирован. Если «I» (прямой брус) может быть размещен в прямоугольнике 3 ? 20 только одним способом (параллельно большей стороне), то «F» (вроде правой нижней фигуры на рис. 31) может быть ориентирован восемью способами. Это зависит в первую очередь от симметрии кусков.
Чтобы не было необходимости определять, какие ориентации допустимы, вы можете задать — в качестве программных констант — все эти возможные положения каждого куска.
Вы можете составить программу без каких-либо хитростей. Кажется, что более эффективно брать первое пустое поле и пытаться поместить туда какой-либо кусок. Вы ищете первое свободное поле. Вы рассматриваете первый еще не использованный кусок. Вы исследуете в некотором порядке все его ориентации, чтобы выяснить, приемлема яя какая-нибудь из них — покрывает ли она только свободные поля. Если игра блокирована (никакой кусок поместить нельзя), то вы удаляете последний размещенный кусок и продолжаете поиск, начиная со следующей ориентации того же куска. Я пробовал сделать так, и это слишком долго…
Тогда я стал пытаться избежать большого числа испытания, исходя аз замечания, сделанного при постановке задачи: кусок не должен определять в игре «островок» с площадью, не кратной пяти. Но определение островков нетривиально…
Я действую следующим образом. Я отыскиваю заполнение прямоугольника; параллельно меньшей стороне, Рисунок 39 показывает возможную ситуацию в ходе выполнения этого плана.
Рассмотрим тогда конфигурацию, окружающую крайнее левое из свободных полей. Обозначив через «
В крайней левой ситуации будем искать способ занять свободное поле на верхней строке. Но ни один из кусков ни в какой из их ориентации не подходит. Вы не можете использовать ни крест, ни «F», ни «Z». Кусок «С» можно использовать только с большей стороной по вертикали…
Я закрепил за каждой конфигурацией список допустимых в ней кусков, и если такие куски есть, подробный список их возможных ориентаций. Это существенно уменьшает число попыток. Еще оказывается, что время от времени появляются острова недопустимой площади, но они существуют только очень короткое время. Я узнал это, поскольку я выводил на экран состояние игры всякий раз, когда в игру входил новый кусок, Этот способ действия имеет много преимуществ:
— очень неудобно иметь программу, которая работает несколько десятков минут (порядка 45 на моем микрокомпьютере), а мы ничего не знаем о том, что в ней происходит, Это неудобно как собственно для работы, так в для того, чтобы сразу же задавать вопросы. А если, хотя бы это и было ошибкой набора, вдруг найдется бесконечный цикл…
— этот вывод позволяет видеть работу компьютера. Видно, как один за другим исследуются куски, как игровое поле более или менее наполняется (иногда вплоть до одиннадцати кусков. Если вы пытались решить эту головоломку вручную, отметили ли вы, какое впечатление производит нехватка одного куска? Однако это просто: если остается островок площади 5, то он обязательно имеет форму одного из игровых кусков…). Затем она почти полностью опустошается, и возобновляется заполнение…
Конечно, вывод на экран требует машинного времени а замедляет работу программы. Всегда будет время отказаться от вывода на экран и переделать процесс выполнения программы без вывода на экран, чтобы получить точное время решения задачи, Чтобы вывод был красивым, нужно, чтобы рамка оставалась на экране неподвижной. Сделать это более или менее легко в зависимости от системы программирования, имеющейся в вашем распоряжении.
Для вывода на экран я не нашел хорошего рисунка, потому что у меня нет ни графического, ни полуграфического экрана — только алфавитно-цифровой. Каждому куску я сопоставил букву и вывожу куски на экран в виде подходящим образом расположенных пяти букв. Такой вывод показан на рис. 41.
Я представляю игру внутренним образом в виде цепочки символов по двум причинам:
— используемый мною язык (LSE) в используемой мною версии является одним из наиболее