2k?t ? s = a/2 ? p/2.

Следовательно, если 2b = а ? p, то n — квадрат числа (а + p)/2 = а ? b.

При t = 2 имеем

p = 4s, b = 2k ? s = a ? p/4.

Следовательно, если p = 4(a ? b), то n — квадрат числа a + p/4 = 2а ? b.

Этим исчерпываются случаи, когда n может быть полным квадратом.

Можно спросить себя, могут ли эти различные случаи действительно осуществляться. Заметим, что при вступлении в цикл у нас b = 1, a = 4. После этого b может быть изменено добавлением а, т. е. кратным числа 4. Следовательно, b остается сравнимым с 1 по модулю 4. В трех возможных случаях:

p = 0, r = b,

p = а ? 2b, r = a ? b,

p = 4 (a ? b), r = 2a ? b,

первый случай — единственный, в котором квадратный корень из n сравним с 1 по модулю 4; два других дают квадратный корень, сравнимый с 3 по модулю 4. При выходе из цикла равенство

b = ар + b2

с учетом соотношений p < a, b < a дает n < 2a2 и, следовательно, при выходе из цикла a2 > n/2. Равенство

ар = n ? b2

дает p = (n ? b2)/a < n/а.

Если окажется, что n/а < a, то непременно p < а и цикл закончен. Чтобы цикл остановился, необходимо, чтобы a2 > n/2, и цикл заведомо останавливается, если a3 > n.

Следовательно, все зависит от положения n по отношению к степеням двойки. Существует такое целое n, что

4q < n < 4q+1.

Возможны два случая. Во-первых, может выполняться неравенство

4q = 22q < n < 22q+1,

и тогда для k = q число a2 = 22q > n/2 может быть значением остановки, но в этом нет уверенности. С другой стороны, если

22q+1 < n < 22q+2,

то единственное значение a, удовлетворяющее условию a2 > n/2, есть a = 2q+1, и для этого значения имеем a2 > n, что гарантирует остановку. Поскольку r = a ? b, то а = r + b > r и, следовательно, a2 > n.

Во втором случае

r = 2a ? b и b < а, откуда а < 2a ? b = r.

Таким образом, все три распознаваемые программой случая являются единственными возможными исходами программы, и каждый из них может произойти.

Таким образом, перед нами — очень забавный алгоритм, который дает значение квадратного корня, и который определяет случай, когда n не является корнем, но в этом случае не дает никакой дополнительной информации.

Программа заведомо останавливается при а = 2q+1, так что число шагов цикла не больше q ? 1 (начиная с 4), причем q — логарифм квадратного корня из n по основанию 2. Таким образом, получилась программа порядка In n, что дает ту же сложность, что и обычный алгоритм, действующий кусками по две цифры. Но для этого последнего алгоритма нужен еще первый цикл, чтобы найти порядок величины n.

Головоломка 19.

Соотношение f(a, b) = f(b, a) следует из самой инициализации p и q:

p := max (a, b); q := min (a, b).

Эти две функции симметричны по a и b, и поэтому точно так же симметрична f. При анализе программы мы ограничены действиями, происходящими внутри цикла. Величины r и s являются вспомогательными переменными, которые не оставляют никакой проблемы. Трудность вызывают преобразования, проделываемые над p и q. Чтобы ясно увидеть эту трудность, осуществим введение новых переменных без разрушения старых. Перепишем наш цикл:

ПОКА q ? eps ВЫПОЛНЯТЬ

r := (q/p)2; s := r/(r + 4)

p' := (2 * s + 1) * p; q' := s * q

p := p'; q := q'

ВЕРНУТЬСЯ

Рассмотрим действия этой программы, производимые над данными a,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату