блоком.

Двигатель подобного типа был установлен на спутнике «ATS-B», выведенном на орбиту в декабре 1966 года. А в июле и ноябре 1967 года были выведены на орбиту экспериментальные спутники «LES» и «ATS-3», также оборудованные двигателями типа «резистоджет».

Сообщается и о ряде других экспериментальных электротермических двигателей: мощностью 30 кВт при скорости истечения 8600 м/с, мощностью 10 Вт с тягой порядка 0,5 грамма и так далее.

Первый из двигателей «резистоджет» нашел применение в космосе в системе ориентации военного спутника «Вела-3», запущенного в июле 1965 года. Мощность этого двигателя равна 90 Вт, тяга — 19 граммов. 19 сентября 1965 года с его помощью был осуществлен первый маневр в космосе.

В мае 1967 года двигатель «резистоджет» с тремя соплами обеспечивал ориентацию и маневрирование усовершенствованного спутника «Вела»; два таких спутника были запущены за месяц до этого, на каждом из них был установлен многосопловой двигатель «резистоджет» тягой каждого сопла 8,5 грамма. Двигатель весом 150 граммов работал на азоте.

Другой двигатель (фирмы «Дженерал Электрик») пульсирующего типа тягой 0,225 грамма прошел в 19661967 годы испытания в течение более 10 000 часов.

Звездолет с термоядерным двигателем

Как известно, атомная энергия может выделяться в результате ядерных реакций двух типов, диаметрально противоположных по характеру: в одном случае в результате реакции образуются более простые, в другом — более сложные атомные ядра, хотя в обеих реакциях изменение энергии внутриядерной связи оказывается качественно одним и тем же — она выделяется.

Реакции, в ходе которых происходит слияние простых атомных ядер в более сложные, то есть синтез ядер, носят название термоядерных. Именно они являются источником колоссальной энергии, излучаемой звездами, в том числе и нашим Солнцем. В этой звездной реакции четыре ядра водорода, сливаясь, образуют одно ядро атома гелия. В этом случае выделяется огромная энергия. Однако науке удалось пока искусственно осуществить только термоядерные реакции взрывного характера — они используются в так называемом водородном атомном оружии. В направлении осуществления управляемых термоядерных реакций, которые могли бы быть положены в основу ядерной энергетики, ведутся интенсивные исследования.

Как известно, в основу всех этих исследований положена блестящая мысль советских физиков Андрея Сахарова и Игоря Тамма, высказанная ими еще в 1960 году, об использовании так называемой «магнитной бутылки» для содержания в ней раскаленной плазмы, в которой должна идти термоядерная реакция. Чтобы эта реакция пошла, плазму нужно нагреть до немыслимой температуры в сотни миллионов градусов, а затем удержать ее в этом состоянии заметное время; изоляция стенок реактора от контакта с плазмой (такой контакт смертелен не только для стенок, но и для самой реакции, что гораздо хуже) может быть осуществлена только с помощью мощного магнитного поля. Кстати сказать, для создания такого поля придется, вероятно, использовать электромагниты со сверхпроводящей обмоткой, например из ванадийгаллиевого сплава, так как иначе затрата электроэнергии будет чрезмерно большой.

Главная трудность на пути практической реализации этой смелой идеи связана с феноменальной неустойчивостью плазменного шнура, и именно в этом направлении ведутся основные исследования российских и зарубежных ученых.

Нашим ученым удалось получить «долгоживущую» плазму температурой в несколько миллионов градусов, что позволяет надеяться на успешное решение в будущем этой сложнейшей научной и инженерной задачи, имеющей столь большое значение для судеб человечества, что его трудно переоценить.

Однако пока эта задача не решена, и космонавтика ограничивается лишь различными теоретическими исследованиями и предварительными проектными разработками термоядерных ракет, показывающими, сколь важна может быть их роль в будущем освоении космического пространства.

Науке известны различные типы термоядерных реакций, которые могли бы найти применение в космических термоядерных ракетных двигателях будущего, например реакции синтеза ядер дейтерия, дейтерия и трития, дейтерия и гелия-3. Считается, что наиболее подходящей для этой цели является последняя реакция, поскольку она не связана с излучением нейтронов и потому не требует особо тяжелой защитной экранировки реактора.

Нагретое до огромных температур рабочее вещество должно вытекать в термоядерном ракетном двигателе из реактора через «горлышко» магнитной бутылки, создавая реактивную струю. В принципе просто, но о конструкции такого двигателя говорить пока рано, хотя на страницах зарубежной печати можно найти различные более или менее детально проработанные проекты подобного рода.

Предварительные исследования показывают, что подобный двигатель должен обладать совершенно уникальными характеристиками: при тяге 180 тонн и массе около 3 тонн (примерно эти параметры характерны для водородно-кислородного двигателя американской системы «Спейс Шаттл») он будет развивать скорость истечения 180 км/с. Заметим для сравнения, что удельный импульс ядерных ракетных двигателей с твердой активной зоной и водородом в качестве рабочего тела не превышает 9000 м/с, а с газообразной (плазменной) активной зоной — 25000 м/с.

Итак, двигатели, созданные на базе термоядерных реакторов, являются принципиально новым шагом на пути развития космических тяговых систем. Эти двигатели позволят человеку, в подлинном смысле слова, стать хозяином Солнечной системы, достигнуть ее самых удаленных планет (Урана, Нептуна, Плутона), совершить полеты за пределы эклиптики, организовать дальние экспедиции в межзвездное пространство, наладить постоянную транспортную связь между планетами земной группы (Марс, Земля, Венера), организовать посещение спутников Юпитера, Сатурна, а главное — перейти к созданию первых тяговых систем, характерных для космических цивилизаций.

Фотонная ракета

Другим способом создания тяги является фотонная ракета. Принцип ее работы довольно прост.

Если на космическом корабле находится мощный источник световых (или каких-либо иных электромагнитных) волн, то, посылая их в одну сторону, можно, как и в случае частиц вещества, создать силу, движущую корабль в другую — противоположную сторону. Эта движущая сила, или тяга, является реакцией фотонов, выбрасываемых источником света на корабле, точно так же как возникает подобная реакция при отражении солнечных лучей «зеркальным парусом».

Ничем не отличалась бы она по существу и от тяги любого реактивного двигателя, за исключением того, что, как указывалось выше, в них реактивная тяга создается вытекающими частицами вещества, а в нашем случае такими же «вытекающими» фотонами.

Этот двигатель отличается от традиционных еще и тем, что скорость «истечения» из него «рабочего вещества» значительно больше. Мало того, это вообще наибольшая возможная скорость «истечения», ибо не существует в природе скорости, большей скорости света. Таким образом, наш фотонный двигатель является как бы идеальным, предельно возможным.

К сожалению, фотонные ракеты могут быть применены только для полетов на очень большие расстояния — например к другим звездам. Их тяга так мала, что только в очень длительном и, следовательно, дальнем полете фотонная ракета может достичь достаточно большой скорости полета.

Понятно, что излучатель фотонного двигателя должен отличаться от обычного прожектора не только размерами.

Установите сколь угодно большой прожектор или сколько угодно много таких прожекторов на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату