ракете специальное устройство — эжектор, в котором используется подсасывающее действие высокоскоростной реактивной струи, вытекающей из ракетного двигателя. Подсасывание воздуха в реактивную струю может привести к увеличению удельного импульса даже при отсутствии сгорания за ракетным двигателем и только за счет увеличения тяги из-за роста массы газов в реактивной струе.
Использование атмосферного кислорода представляется некоторым авторам и иначе. По их мнению, с помощью специального летательного аппарата с воздушно-реактивными двигателями, совершающего длительные полеты у границ плотной атмосферы (то есть на высотах порядка 80-110 километров), можно осуществить конденсацию и накопление кислорода из атмосферы. Эта возможность связана с тем, что, как показывает расчет, мощность двигателей на таких высотах оказывается достаточной и для преодоления лобового сопротивления аппарата, и для осуществления процесса сжижения кислорода. Считается, что после накопления кислорода в количестве, равном весу летательного аппарата, может быть осуществлена дальнейшая фаза космического полета с помощью жидкостного ракетного двигателя, работающего на жидком водороде. Может быть организована и передача жидкого кислорода другим космическим ракетам путем заправки в полете.
Еще более радикальным является другое предложение об использовании ресурса верхних слоев земной атмосферы как практически неисчерпаемой кладовой активных химических веществ, которые могут служить превосходным ракетным топливом. Эти вещества образуются в результате взаимодействия атмосферы с коротковолновым излучением Солнца, являясь продуктами фотохимических реакций, идущих под действием этого излучения. Как было подтверждено с помощью ракетных исследований ионосферы, на высотах более 80-100 километров молекулы кислорода, а затем и азота, распадаются на составляющие их атомы. Такой распад, требующий затраты значительных количеств тепла, идет под действием жесткого коротковолнового излучения Солнца.
Образующиеся таким образом за счет аккумулирования солнечной энергии атомарные газы, кислород и азот, весьма активны химически и стремятся снова к слиянию в молекулы с выделением затраченной на диссоциацию энергии. Произведенные расчеты показывают, что количество запасенной таким образом в атмосфере химической энергии превосходит энергию всех известных запасов химического топлива на Земле.
В 1956 году в США были предприняты первые попытки экспериментального доказательства возможности ускорения процесса рекомбинации атомарных газов атмосферы. Для этого с геофизической ракеты «Аэроби», запущенной в ионосферу, на высоте около 90 километров было выброшено примерно 9 килограммов вещества, являющегося катализатором, ускоряющим реакцию рекомбинации атомарного кислорода. Немедленно вслед за этим в ночном небе образовалось быстрорастущее и яркое зеленовато- белое облако — начался бурный процесс рекомбинации.
Неудивительно возникновение мысли о возможности осуществления подобного каталитического процесса рекомбинации внутри двигателя ракеты, с тем чтобы использовать выделяющуюся при этом энергию для создания движущей реактивной струи. Подобные предложения неоднократно высказывались как у нас в стране, так и за рубежом. Такие гипотетические двигатели называются «хемосферными» (поскольку зону ионосферы с максимальной интенсивностью процесса диссоциации газов называют хемосферой), или «ионосферными».
Принципиальное устройство ионосферного двигателя весьма просто. Он напоминает собой обычный сверхзвуковой прямоточный воздушно-реактивный двигатель — спереди через воздухозаборное отверстие в двигатель поступает атмосферный воздух с высокой концентрацией атомарных газов, сзади через сопло вытекает раскаленная струя рекомбинировавших молекул кислорода и азота. Место камеры сгорания этого двигателя, работающего без какого бы то ни было топлива, занимает рабочая камера рекомбинации, в которой помещен катализатор. В печати указывается, что одним из наилучших возможных катализаторов является золото — тонким слоем оно может покрывать стенки камеры и перегораживающую ее решетку. Впрочем, катализатор может оказаться и вовсе не нужным, так как в результате сжатия набегающего потока во входном воздухозаборнике двигателя температура и давление в нем повысятся настолько, что рекомбинация пойдет сама по себе.
Однако, несмотря на внешнюю заманчивость этой идеи «бесплатного» энергопитания силовой установки летательного аппарата, практическая ее реализация весьма сомнительна.
Действительно, при полете с очень большими, например орбитальными, скоростями такой двигатель будет обладать чрезмерно большим лобовым сопротивлением, в несколько раз превосходящим развиваемую им полезную тягу. Чтобы тяга превосходила сопротивление, скорость полета должна быть относительно небольшой, примерно в 2–4 раза больше скорости звука, но тогда возникают трудности, связанные с созданием необходимой подъемной силы, то есть удержанием летательного аппарата на данной высоте.
Другой внешний ресурс атмосферы — это электрический заряд. Известно, что в самых верхних слоях частицы воздуха ионизованы, они уже не нейтральны, как у Земли. Это наводит на мысль о том, что при полете в ионосфере можно использовать ионизованные частицы в качестве рабочего вещества электроракетных двигателей. Точнее говоря, это будут уже не электроракетные, а своеобразные электропрямоточные или ионно-прямоточные двигатели. В них будут засасываться из ионосферы заряженные частицы, точно так же как в тяговую камеру ионного ракетного двигателя поступают ионы цезия из ионного источника. Затем эти частицы будут обычным для ионных двигателей способом ускоряться и вытекать позади, создавая реактивную тягу.
Конечно же, для такого разгона снова понадобится электроэнергия.
Экономия будет лишь за счет энергии, расходуемой на ионизацию рабочего вещества в обычных ионных двигателях. Доля этой энергии в общей затрате электроэнергии в ионном двигателе обычно очень невелика, так что и экономия в энергии будет сравнительно небольшой, но дело и не в ней. Главное в том, что рабочее вещество в этом случае уже не находится на борту летательного аппарата. Однако такие аппараты смогут летать лишь на относительно небольших высотах — в разреженной атмосфере, но не в космосе.
Правда, в космосе также встречаются заряженные частицы вещества — например, в космическом излучении. Испускает подобные корпускулярные потоки и Солнце. Но их использование еще более затруднительно, хотя принципиально и возможно.
Однако электромагнитная энергия космоса вовсе не ограничивается корпускулярным излучением Солнца и звезд.
Гораздо больше по величине другие виды этой энергии. В частности, известно, что в космосе существуют весьма мощные локальные магнитные поля. Ученые связывают с воздействием этих полей природу основной части космического излучения.
Предполагают, что заряженные частицы — главным образом протоны, а также ядра атомов гелия и в небольшом числе других, более тяжелых атомов, — выброшенные в космос звездами или в результате иных процессов, затем разгоняются в космических магнитных полях. Так в гигантских природных электромагнитных ускорителях рождаются космические лучи с их колоссальной энергией, в миллиарды раз большей, чем в самых мощных циклотронах современных лабораторий.
Нельзя ли воспользоваться энергией космических магнитных полей для того, чтобы вот так же разогнать до нужных огромных скоростей межпланетный корабль? Такая идея высказывалась рядом ученых, у нас в стране — профессором Г. И. Покровским. Однако практически для реализации такой идеи нужно прежде всего найти мощные магнитные поля в космосе, узнать их расположение, конфигурацию, интенсивность, чтобы умело управлять разгоном корабля.
Очевидно, что и на этот метод использования электромагнитной энергии космоса вряд ли можно всерьез рассчитывать в ближайшее время.
Правда, одно космическое магнитное поле нам хорошо известно, и его использование кажется вполне возможным и даже в ряде случаев выгодным. Речь идет о геомагнитном поле.
В свое время в США активно обсуждалась схема геомагнитного движителя, который позволяет использовать геомагнитное поле и разреженную плазму, заполняющую околоземное пространство в ионосфере, для создания полезной движущей силы. Движитель представляет собой по существу тонкую металлическую (из алюминия, магния, бериллия или лития) проволоку очень большой длины (от 1 до 50 километров) с расположенными на ее концах контакторами; такое устройство движителя позволяет