скольжения. В виде втулок и вкладышей они пригодны для комбайнов и кораблей, для токарных станков и прокатных станов.
Советскими учеными за последнее время изобретены десятки типов композиционных материалов. Удается сочетать то, что раньше считалось несочетаемым, например, металл с керамикой, полимеры со стеклом, бетон с арматурой из синтетики. Композиционными материалами являются токопроводящие пластмассы, лаки, защищающие металл от коррозии, электронагревательные элементы и многое другое. И еще больше их будет в начавшейся пятилетке. К примеру, уже готова к внедрению разработка киевских и московских ученых, предложивших легировать термопласты добавками полиамидов, благодаря чему прочность изделий резко повышается. Новый материал лучше выдерживает нагрузки на давление и разрыв. Повышается модуль упругости и другие полезные качества. Такой полимерный сплав может быть использован в сельскохозяйственном машиностроении, гражданской авиации, промышленности бытовых приборов.
ГИББЕРСИБ — ГИББЕРЕЛЛИН СИБИРСКИЙ
В нашей стране много сельскохозяйственных районов, где весна наступает поздно. И перед учеными стояла задача создать стимулятор роста, который позволил бы семенам быстрее взойти, а растениям скорее зацвести, чтобы в теплый летний период набрать сил и к ранней осени дать добротный урожай.
И такой перспективный стимулятор, получивший название гибберсиб (гиббереллин сибирский) был создан учеными новосибирского академгородка. Над ним работали биологи, генетики, агрономы, полеводы. Он был проверен в Казахстане, Белоруссии, Молдавии, Поволжье, в' ряде областей Сибири. При расходе препарата всего 40 г/га, урожайность кормовых. трав и кукурузы на силос повысилась на 15–20 процентов, а проса — на 30–40 процентов. Показатели совсем неплохие… Гибберсиб благоприятна сказался и на получении ранней продукции помидоров, картофеля, капусты, огурцов. Государственная проверочная комиссия разрешила выпуск этого гормонального стимулятора, признав его огромное народнохозяйственное значение.
Высокая биологическая; активность гиббереллинов известна ученым давно. Эти органические вещества использовались главным образом селекционерами. Нужен был новый метод массового производства, дающий дешевую продукцию. И он был найден в ходе анализа старого метода. Обычный кристаллический стимулятор получают из микробиологической культуры специфических грибков. Это естественный продукт, выделяемый живыми организмами. Но оказалось, что в неиспользованных отходах после очистки есть аналогичные вещества, так сказать, побочные формы. Каждая из них в отдельности не имела ценности. Но в сумме эти вторичные гиббереллины оказались чрезвычайно полезными, а главное, очень выгодными экономически из-за большого выхода конечной продукции. Но еще важнее то, что сумма всех физиологически активных веществ дает комплексный эффект стимуляции роста и развития растений. Образно говоря, это своеобразные поливитамины, универсальное средство с широким спектром воздействия. Оно усиливает впитывание корнями удобрений, увеличивает в плодах количество витаминов и других полезных веществ, прибавляет растениям силы в борьбе с заболеваниями. И еще одно практическое преимущество — культурные растения повышают свою урожайность без лишнего потребления воды, и тут огромная экономия средств. В настоящее время мощное и в то же время тонкое средство широко исследуется с точки зрения пригодности при возделывании свеклы, люцерны, яровой пшеницы и других культур.
МОЛОТ-ИСПОЛИН
В современной технике наметилась тенденция использования все более высоких давлений. Без них невозможен синтез новых химических веществ. Огромные силы сжатия помогают химикам изменять структуру молекул и получать продукты с заранее заданными свойствами — новые лекарства, пластмассы, способные соперничать с металлами, ядохимикаты для сельского хозяйства, органические кислоты.
Еще в 1939 году советские ученые теоретически подсчитали, что давление свыше 50 тысяч атмосфер поможет создать искусственные кристаллические вещества — аналоги природных. И ныне уже действуют заводские установки сверхвысоких (критических) давлений, изготавливающие промышленные алмазы поточным методом. В нашей стране научились делать и другие кристаллические материалы, например, «эльбор», — нитрит бора, не уступающий алмазу по твердости. Он уже используется в металлообработке как режущий инструмент. В задачу этой пятилетки входит создание новых алмазоподобных материалов для обработки сплавов высокой прочности. Будут синтезироваться кристаллы, не встречающиеся в природе.
Сверхвысокие давления в наши дни пришли и в металлообработку. Ведь сейчас во многих отраслях широко используются твердые и сверхтвердые сплавы — материалы второй половины XX века. Они относятся к классу труднодеформируемых, обработать их токарным резцом или фрезой можно лишь с большими затратами времени и труда. Гораздо лучше с такой задачей справляется давление, то есть в данном случае штамповка.
На заводе «Тяжстанкогидропресс» создан самый мощный на сегодняшний день гидравлический молот принципиально нового типа. По высоте он с пятиэтажный дом. Гигант выполнен по самому последнему слову науки и техники. Скорость его рабочего органа достигает 20 метров в секунду (высота в 16 метров и понадобилась для того, чтобы разогнать этот орган до фантастической быстроты). С такой стремительностью он ударяет по заготовке и за долю секунды превращает ее в деталь сложной формы. При энергии столкновения до 1600 килоджоулей малопластичный сплав становится податливой массой и заполняет собой все пространство матрицы. Исполин работает быстро и отличается высокой точностью. Кроме того, при подобной ударной штамповке здесь отходов в четыре раза меньше, чем при фрезеровании. Значит, арифметика простая: молот из одной отливки сделает несколько деталей, а фрезерный станок лишь одну, а остальное у него уйдет в металлическую стружку. Словом, молот-гигант отвечает еще и современным требованиям малоотходной технологии.
Преимущества нового способа еще и в том, что при молниеносной скорости деформирования заготовки структура металла меняется в самую благоприятную сторону. В готовом изделии нет внутренних напряжений, в них не возникают усталостные трещины, а значит, их работоспособность повышается в несколько раз.
РОБОТЫ СТАНОВЯТСЯ «УМНЕЕ»
Не за горами время, когда роботы будут трудиться на каждом заводе и на каждой фабрике. Сейчас в мире их выпускают десятками тысяч за год. Еще двадцать лет назад даже самые смелые прогнозисты не могли предвидеть, что роботизация производств пойдет столь высокими темпами.
Каковы же рубежи современных индустриальных манипуляторов? Ныне одно поколение роботов быстро сменяет другое. Для них создаются более совершенные системы программирования — микропроцессорные блоки, повышающие гибкость роботов при обслуживании заводских участков, то есть их универсальность.
Очень часто удача ожидает инженера-конструктора, когда он решительно отказывается от установившейся традиции. Обычно робот монтируется на неподвижной станине. Дорогой автомат обслуживает один станок. Чтобы манипулировать деталями для группы станков, приходится удлинять «руку», делать ее из нескольких сочлененных звеньев. Совсем по другому пути пошли инженеры ГДР. Они придумали для робота рельсы и сделали его мобильным. Теперь, загрузив заготовки в один штамповочный пресс, он по программе продвигается к другому и переносит его готовую продукцию на конвейер,