отразится на работе соседних.
Отработанные – в том числе и оставшиеся от былых взрывов – скважины можно использовать для вечного захоронения долгоживущих активных отходов переработки отработанного ядерного топлива. С полигона же будут вывозиться лишь полезные продукты переработки.
Полигон изначально расположен в экологически безопасном отдалении от большинства значимых местностей. Обезопасить его от террористов несложно: пустынные подходы к нему легко контролируются и на протяжении большей части года трудно проходимы, да и воздушные трассы проходят мимо.
Иные способы использования полигона не предложены до сих пор. И вряд ли будут предложены: местностей, где случались ядерные взрывы, будут бояться ещё долго.
Экономическая сторона проекта может урегулироваться на взаимоприемлемой основе. Энергетический рынок – в отличие от рынка космических запусков – столь остро конкурентен, что произвольное назначение цен на нём невозможно. Поэтому возможно согласование интересов точным расчётом.
Размах необходимой работы столь велик, что требует взаимной уверенности в стабильно хороших межгосударственных отношениях. Казахстан и Россия уже достаточно долго демонстрируют именно такую стабильность, так что начинать работу можно без особого риска. Начавшись же, она сама будет способствовать поддержанию политического и экономического единства.
ЗА МОРЕМ ТЕЛУШКА – ПОЛУШКА
К сожалению, рентабельность зависит не только от масштабов производства. Как видно хотя бы из опыта уже двух газовых войн Украины с остальной Россией, транспортные расходы способны повлиять на экономические показатели проекта ничуть не меньше, чем собственно производственные.
В частности, линии электропередачи к потенциальным потребителям в Западной Европе не только потребуют капиталовложений, сопоставимых с расходами на магистральные газопроводы. Они ещё и преобразуют заметную долю перекачиваемой по ним энергии в тривиальное и никому не нужное тепло. Борьба с законом Ома отнимает заметно больше сил, нежели, к примеру, перекачка газа – хотя и на обслуживание насосных станций на магистральных газопроводах также тратится немалая мощность.
Выход из положения теоретически общеизвестен. Сверхпроводящий кабель вовсе не создаёт сопротивления и не поглощает энергию. Правда, материалы для его изготовления недёшевы – но по сравнению с десятками или даже сотнями ядерных реакторов тысячи километров кабеля почти незаметны.
Увы, сверхпроводимость оплачивается не только ценой кабеля. Куда важнее, что наблюдается она только при сверхнизких температурах. Расходы на охлаждение кабеля нынче – при всём совершенстве современной теплоизоляции – многократно превосходят затраты на прокачку газового потока, – сопоставимого по содержащейся в нем мощности.
Впрочем, рецептуры сверхпроводников совершенствуются. Ещё недавно эффект наблюдался только при охлаждении жидким гелием – до 4,2 Кельвина. Открытые около двадцати лет назад керамические материалы сверхпроводимы при температуре жидкого водорода – 21 К. Есть уже и вещества, работоспособные при температуре жидкого азота (80 К) и даже углекислоты (200 К) – но пока слишком хрупкие для надёжного кабеля. Когда проблема решится, сверхпроводящий кабель станет рентабельнее не только газопровода, но и любого другого ныне существующего способа энерготранспорта – ведь каждый лишний десяток градусов увеличивает энергозатраты на охлаждение раза в два.
Правда, каждый шаг по температурной шкале требует изрядных исследований не только новых рецептур, но и новых классов материалов. Как отмечено выше, первый же крупный скачок прогресса потребовал перехода от сплава к керамике. Что потребуется для следующего прорыва – пока неясно.
Так что любой эксперимент в этой сфере должен сопровождаться крупномасштабными теоретическими исследованиями. По счастью, как раз в нашей стране достижения теоретиков на данном направлении громадны. Достаточно напомнить: теорию сверхпроводимости создавали – после первых концептуальных успехов Бардина, Купера и Шриффера – именно отечественные физики Гинзбург, Ландау, Абрикосов и Горьков. Не зря Гинзбург и Абрикосов удостоены Нобелевской премии (Ландау награждён за более ранние достижения). Научная школа исследований по квантовой физике в целом и теории сверхпроводимости в частности у нас всё ещё высоко развита. И можно надеяться: целенаправленная поддержка этой школы способна в обозримом будущем дать принципиально новые результаты с неисчерпаемым выходом в практику.
По академическим меркам затраты на такую поддержку должны быть грандиозны. Но на фоне общего бюджета столь же грандиозного ядерного комплекса они окажутся почти неощутимы.
Вдобавок следует учесть: научная теория никогда не бывает узконаправленной. Наряду с ожидаемыми результатами она всегда приносит и что-то непредвиденное. Причём польза от непредвиденных достижений зачастую многократно превосходит планируемый эффект.
В данном случае главным достижением окажется сам факт развития наук и интеллектуальных технологий. Современное общество прогрессирует тем быстрее и заметнее, чем больше в нём доля интеллекта, создающего новое, и меньше – доля использования уже существующих находок.
ЭКИБАСТУЗ
Среди таковых, в частности, технология, опробованная ещё в начале 1980-х годов на Экибастузе. Тамошняя ГРЭС-2 – по сей день одна из крупнейших в Республике Казахстан электростанций. Её уникальная труба высотой 420 метров в своё время вошла в Книгу рекордов Гиннесса.
Пуск первого блока ГРЭС-2 состоялся в декабре 1990-го года, а 22-го декабря 1993-го года запущен второй энергоблок (в его пуске принимал участие президент Нурсултан Абишевич Назарбаев). Одновременно со станцией возведен поселок энергетиков (его назвали Солнечным).
ЭГРЭС-2 вырабатывает электроэнергию из высокозольного экибастузского угля двумя энергоблоками по 500 МВт. Энергия ГРЭС-2 предназначена сейчас для обеспечения севера Казахстана и покрывает 15% энергопотребления республики. Потребители – десятки предприятий не только Казахстана, но и России. Среди них, в частности, космодром «Байконур», канал Иртыш-Караганда.
Отсюда же идёт самая длинная на планете ЛЭП постоянного тока. Это сверхмощная линия электропередачи напряжением 1500 КВт Экибастуз-Центр протяженностью 2414 километров. Первая опора ЛЭП установлена в декабре 1980-го года. С тех пор 4000 опор (высота опоры 41 метр) шагают на запад республики, через реки Иртыш, Ишим, Тобол, Урал, Волгу, до Тамбова, связывая Казахстан с Россией. Если не удастся воспользоваться достоинствами сверхпроводимости, можно аналогичным образом транслировать энергию в Европу через Русскую равнину, Днепр, Двину, Неман, Вислу и Одер.
Научная непроработанность технологии сверхпроводящей электропередачи – очевидный минус. Но изобретательское искусство в немалой степени базируется на превращении минусов в плюсы. Финансирование наук, интеллектуальных технологий, просвещения всегда оборачивается столькими плюсами, что на фоне неизбежных бесчисленных побочных выгод ядерного проекта померкнет даже решение задачи высокотемпературной сверхпроводимости.
Особенно если участь, что финансировать наш прогресс будут извне.
ЕВРОДЕНЬГИ ДЛЯ ЭНЕРГОЗОНЫ
Общий размах капиталовложений в предлагаемый проект многократно превосходит собственные возможности российского бюджета. Причём не только нынешнего – грозящего зачахнуть в случае перебоев