означает в той же семиричной системе дробь «0,33»? Здесь результат сложнее: 3/7 + 3/49 = 24/49.
Рассмотрим еще несколько примеров недесятичных дробей без знаменателя:
«2,121» в троичной системе 2 + 1/3 + 2/9 + 1/27 = 216/27
«1,011» в двоичной системе 1 + 1/4 + 1/8 = 13/8
«3,431» в пятиричной системе 3 + 4/5 + 3/25 + 1/125 = 3116/125
«2, (5)» в семиричной системе 2 + 5/7 + 4/49 + 5/343 +… = 25/6В правильности последнего равенства читатель легко может убедиться, если попробует применить к данному случаю, с соответствующим видоизменением, рассуждения, относящиеся к превращению десятичных периодических дробей в простые.
ЗАДАЧА- ШУТКА
Какое число делится на все числа без остатка?
(Ответ – на стр. 102.)
Глава VI галерея числовых диковинок
Арифметическая кунсткамера
В мире чисел, как и в мире живых существ, встречаются подлинные диковинки, редкие феномены, обладающие исключительными свойствами. Из таких необыкновенных чисел можно было бы составить своего рода музей числовых редкостей, настоящую «арифметическую кунсткамеру». В витринах подобного музея нашли бы себе место не только числовые исполины, о которых мы побеседуем еще в особой главе, но и числа сравнительно небольшие, выделяющиеся из ряда других какими-либо необычайными свойствами. Некоторые из них уже по внешности привлекают к себе интерес и внимание; другие открывают свои диковинные особенности лишь при более близком знакомстве. Приглашаю читателя пройтись со мною по галерее таких числовых диковинок и познакомиться с некоторыми из них.
Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам уже знакомы. Мы знаем уже, почему попало в арифметическую кунсткамеру число 2:
Не будет неожиданностью для нас найти здесь и число 9
число 12
Чем оно замечательно? Конечно, это число месяцев в году и число единиц в дюжине, но что, в сущности, особенного в дюжине? Не многим известно, что 12
2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
Четырнадцать делителей – вместо тех восьми, которые имеют числа, написанные в десятичной системе, если оканчиваются двумя нулями (2, 4, 5, 10, 20, 25, 50 и 100). В нашей системе только дроби вида 1/2, 1/4, 1/5, 1/20 и т. д. превращаются в конечные десятичные; в 12- ричной же системе можно написать без знаменателя гораздо более разнообразные дроби, и прежде всего дроби: 1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12, 1/16, 1/18, 1/24, 1/36, 1/48, 1/72, 1/144,
которые соответственно изобразятся так:
0,6; 0,4; 0,3; 0,2; 0,16; 0,14; 0,1: 0,09; 0,08; 0,06; 0,04; 0,03; 0,02; 0,01.
При таких очевидных преимуществах 12-ричной системы неудивительно, что среди математиков раздавались голоса за полный переход на 12-ричную систему [21] . Однако мы уже чересчур тесно сжились с десятичной системой, чтобы решаться на такую реформу.
Вы видите, следовательно, что дюжина имеет за собою длинную историю и что число 12 не без основания очутилось в галерее числовых феноменов. Зато его соседка – «чертова дюжина», 13
число 365
Оно замечательно не только тем, что определяет число дней в году. Прежде всего, оно при делении на 7 дает в остатке 1. Эта, казалось бы, несущественная особенность числа 365
Другая особенность числа 365, уже не связанная с календарем, тоже весьма любопытна:
365= 10 × 10+ 11 × 11 + 12 × 12.
То есть, оно равно сумме квадратов трех последовательных чисел, начиная с десяти:
102 + 112 + 122 = 100 + 121 + 144 = 365.
Но и это еще не все: оно же равно сумме квадратов двух следующих чисел – 13 и 14:
132 + 142= 169 + 196 = 365.
Таких чисел не много наберется в нашей арифметической кунсткамере.
Три девятки
В следующей витрине выставлено наибольшее из всех трехзначных чисел: 999
Любопытная особенность числа 999 проявляется при умножении на него всякого другого трехзначного числа. Тогда получается шестизначное произведение, первые три цифры которого есть умножаемое число, только уменьшенное на единицу, а последние три цифры – дополнения первых до 9. Например:
Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:
Отсюда вытекает весьма простой прием «мгновенного» умножения любого трехзначного числа на 999:
847 × 999 = 846153; 509 × 999 = 508491; 981 × 999 = 980019 и т. п.
А так как 999 = 9 × 111 = 3 × 3 × 3 × 37, то вы можете, опять-таки с молниеносной быстротой, писать целые колонны шестизначных чисел, кратных 37, – чего не знакомый со свойствами числа 999, конечно, не в состоянии сделать. Короче говоря, вы можете устраивать перед непосвященными маленькие сеансы «мгновенного умножения и деления» не хуже иного фокусника.
Число Шехеразады
Следующим на очереди у нас 1001