Эрвин Чаргафф выполнил более скрупулезный анализ ДНК и установил, что в пределах экспериментальной погрешности содержание аденина совпадает с содержанием тимина, то же относится к паре гуанин- цитозин. Впрочем, погрешность была довольно высокой, да и сам метод анализа у многих исследователей вызывал сомнения. Вот, в сущности, и все, что знали ученые о ДНК к началу нашей истории.

С другой стороны, о роли ДНК в организме было известно еще меньше. Долгое время ученые отводили ей роль арматуры хромосом, хранилища фосфора, регулятора кислотности в ядре клетки, были и другие гипотезы. Идею о том, что ДНК служит носителем наследственной информации, никто из ученых всерьез не рассматривал. Сейчас можно найти ссылки на то, что выдающийся русский биолог Николай Константинович Кольцов (1872–1940) еще в 1928 году писал о присутствии в хромосомах гигантских молекул, ответственных за наследственность, состоящих из двух зеркальных цепочек, каждая из которых при удвоении играет роль шаблона (темплата) для синтеза второй цепочки. Прозрение из разряда гениальных, но, во-первых, ниоткуда не следует, что Кольцов говорил о ДНК, а во-вторых, идея в те годы прошла незамеченной.

Все внимание ученых было приковано к белкам, связанным с ДНК и образующим с ней хромосому.

Белки обладали заведомо более сложным строением (двадцать строительных блоков против четырех в ДНК) и множеством экспериментально подтвержденных биологических функций. ДНК в сравнении с ними смотрелась как унылый бесконечный забор, сложенный из четырех повторяющихся бетонных плит, рядом с затейливыми нарядными особняками. Впрочем, о строении белков тоже было известно очень мало. К моменту начала нашей истории было установлено лишь наличие первичной структуры белка (см. главу 5).

Считается, что первыми убедительно доказали определяющую роль ДНК в передаче наследственной информации американцы Освальд Эвери, Колин Маклеод и Маклин Маккарти в ходе изящного эксперимента, выполненного на бактериях в 1943 году. Их сообщение не потрясло основы генетики. Во-первых, время было неподходящее для научной революции – война, во- вторых, многие ученые просто пропустили эту публикацию, а ознакомившиеся высказали свои сомнения. Кроме того, для большинства биологов все эти исследования если и представляли интерес, то только досужий. Они привыкли оперировать с хромосомами, клетками, организмами, а уж что там служит действующим началом – дело второе. Они вполне комфортно чувствовали себя в рамках существовавшей методологии. Еще меньший интерес они проявляли к структуре ДНК. Все это была какая-то мудреная, незнакомая им химия, и они совершенно не представляли себе, как знание вышеозначенной структуры может помочь им в их работе.

Теперь о главных действующих лицах нашей истории. Перечисляю в порядке возраста.

Фрэнсис Крик, 35 лет, англичанин, физик по образованию, громогласный, многословный, заносчивый, человек увлекающийся и фонтанирующий идеями. Во время войны занимался разработкой магнитных мин. После прочтения книги Эрвина Шрёдингера “Что такое жизнь?” увлекся биологией, работал какое-то время в лондонском Королевском колледже у Джона Рэндалла, откуда его вышиб ли за несносный характер. С 1949 года работал в Кембридже в Кавендишской лаборатории в группе Макса Перуца, занимался рентгенографическим изучением белков, наскребывая материал для кандидатской диссертации. Неудачник по формальным показателям, непризнанный (пока) гений по сути.

Морис Уилкинс, 35 лет, уроженец новой Зеландии, в шесть лет переехавший с родителями в Англию, физик по образованию, хрестоматийный ученый – в очках, мягкий, податливый, скромный, погружен в науку. Во время войны работал над созданием экранов для радаров, затем участвовал в работах по Манхэттенскому проекту в Калифорнии. После войны перешел в биологию, чистую во всех смыслах науку. Все это время работал в Королевском колледже, где познакомился и подружился с Криком. Был одним из пионеров рентгенографического исследования кристаллов ДНК, которую считал одной из важнейших биологических молекул. Работал методично, основательно, без спешки, не думая о приоритете и громких открытиях. Характер Уилкинса лучше всего отражает название его воспоминаний – “Третий мужчина в истории двойной спирали”.

Розалинд Франклин, 31 год, из еврейской банкирской семьи, химик по образованию, резкая в суждениях, нетерпимая в спорах, зацикленная на идее женского равноправия. После защиты кандидатской диссертации в 1945 году в Кембридже переехала в Париж, где занималась рентгеноструктурным анализом углей и графита и достигла в этом высокого профессионализма. В 1950 году Джон Рэндалл пригласил ее на работу в Королевский колледж. Предполагалось, что Франклин будет заниматься исследованиями ДНК вместе с Уилкинсом, фактически в роли его ассистентки. Франклин настояла на том, что будет работать самостоятельно и потребовала, чтобы ей были переданы все новое оборудование и лучшие образцы кристаллической ДНК, имевшиеся в распоряжении лаборатории, к ней же в качестве аспиранта перешел и единственный сотрудник Уилкинса Раймонд Гослинг. Уилкинс ничего не смог противопоставить такому напору, он постенал и смирился, продолжив работать на том оборудовании, что у него было раньше, и с теми образцами, которые ему оставили. Стиль работы, впрочем, у них был одинаковый – последовательный и скрупулезный, “как доктор прописал”. К ДНК Франклин относилась как к объекту рентгеноструктурного анализа, довольно интересному с этой точки зрения.

Джеймс Уотсон, 23 года, американец, длинный, тощий, лохматый, по юношескому экстремизму считающий большую часть окружающих, включая коллег-ученых, недоумками разной степени тяжести, признанный гений с детства. В 15 лет поступил в Чикагский университет, в 22 года защитил кандидатскую диссертацию по зоологии. Был первым и, как часто бывает, любимым аспирантом Сальвадора Лурия (1912–1991), перебравшегося в США из Италии и ставшего в 1969 году нобелевским лауреатом по физиологии и медицине “за открытия, касающиеся механизма репликации и генетической структуры вирусов”. Уотсон подключился к этим исследованиям в самом их начале, собственно, именно этим он и занимался в своей аспирантской работе. Тогда он впервые услышал об эксперименте Эвери – Маклеода – Маккарти и безоговорочно уверовал в то, что ДНК служит носителем наследственной информации. Но ни он, ни его руководители ничего не понимали в нуклеиновых кислотах, так что Уотсона в 1950 году отправили на стажировку в Данию к известному биохимику Герману Калькару, который работал в этой области. Они не нашли взаимопонимания, Уотсон хотел заниматься структурой ДНК, у Калькара на его счет были свои планы, так что год стажировки прошел почти что впустую. Весной 1951 года Уотсон отправился на конференцию в Неаполь, где услышал доклад Уилкинса. Из него он впервые узнал, что для установления структуры ДНК может быть использован метод дифракции рентгеновских лучей. О самом методе он тоже знал понаслышке. Для освоения метода он стал добиваться перевода в Кембридж. Осенью 1951 года он прибыл в Кавендишскую лабораторию, в группу Макса Перуца, где встретил родственную душу – Фрэнсиса Крика. Они быстро сошлись.

Собственно, в этот момент и начинается наша история. В Кавендишской лаборатории царила нервная обстановка из-за недавнего сообщения Полинга о расшифровке вторичной структуры белков. Пусть это была всего лишь гипотеза, но приоритет в открытии альфа-спирали теперь принадлежал Полингу – американцу! Это понимал и Уильям Брэгг {14} , директор лаборатории, справедливо считавший себя одним из отцов рентгеноструктурного анализа, и Макс Перуц, на протяжении нескольких лет совершенствовавший технику съемки дифрактограмм и методы их расчета и вплотную подошедший к расшифровке структуры белков. Они жаждали реванша, это стало их навязчивой идеей. Одержим ею был и Крик. И тут ему представился случай впервые проявить себя во всей красе. Буквально за два дня он вместе с двумя другими сотрудниками лаборатории, Стоуксом и Кокрэном, разработал математическую модель того, как спиральная структура должна отражаться в рентгеновских дифрактограммах. Написанную тут же статью немедленно послали в журнал “Nature”, а копию Полингу – знай наших!

Но это было лишь малой компенсацией. Никто почему-то не сомневался, что следующим объектом, за который примется Полинг, будет ДНК, а уж если он возьмется, то непременно сделает. Мы должны опередить его, это будет наш триумф! Крик с Уотсоном, отбросив все дела, стали размышлять, как подступиться к проблеме. Уотсон безоговорочно уверовал в спираль, как раньше уверовал в ДНК. Как биолог он знал, что спираль – самая простая из природных форм, поиск вначале надо было вести в этом направлении. Крик посоветовался с Уилкинсом, и тот показал полученные им дифрактограммы. Они сошлись в том, что в них явственно проступают черты спирали. Уилкинс предположил, что эта спираль состоит из трех полинуклеотидных цепей. Уотсон почитал отчет Франклин о работе, проделанной в Королевском колледже. Отчет был довольно туманным, Франклин явно не спешила выносить на суд слушателей свои выводы, кроме главного: “Бесспорные факты могут быть получены только после того, как будет накоплено достаточно данных, чтобы провести более тонкий кристаллографический анализ”.

На Уилкинса и Франклин было мало надежды, они могли получать свои улучшенные дифрактограммы и полгода, и год. Крик с Уотсоном решают идти путем Полинга: не дожидаясь экспериментальных результатов, попытаться собрать молекулярную модель ДНК из шариков, изображающих атомы, и стерженьков. Проблема заключалась в том, что с химией

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату