если оно назрело, способны многие, а вот написать хороший учебник могут единицы. Ивановскому удалось и то и другое.

За сто двадцать лет, прошедших с открытия Ивановского, вирусология превратилась в обширнейшую область науки в точном соответствии с местом, которое занимают вирусы в иерархии органической материи на нашей планете. Оказалось, что по численности вирусы могут претендовать на звание одной из самых распространенных форм существования этой материи. Достаточно сказать, что в одном литре морской воды содержится 250 миллиардов вирусов, что на порядок больше количества содержащихся там же бактерий и сопоставимо с количеством людей, когда-либо живших на Земле. Ученые детально изучили около пяти тысяч различных видов (штаммов) вирусов, но общее их количество оценивается в несколько миллионов. Это приблизительно соответствует числу химических веществ, синтезированных химиками за всю историю их науки, что свидетельствует, с одной стороны, о большей изобретательности Природы, а с другой – о малости наших знаний о вирусах и о том, что работы впереди непочатый край.

Нет, знаем мы уже, конечно, много, даже очень много. Например, о том, как устроены вирусы. Тут ученым помогли приборы и методы исследования, о которых даже не подозревали во времена Ивановского. Так, только после изобретения в 1931 году электронного микроскопа удалось наконец-то разглядеть вирусы. Сделал это упоминавшийся выше Уэнделл Стэнли.

Размер большинства вирусов составляет от 10 до 300 нм, то есть они являются классическими нанообъектами. Говоря современным языком, вирусы представляют собой контейнер для хранения генетической информации в виде ДНК или РНК [30] . Сам контейнер – защитная оболочка вирусной частицы (вириона) – состоит из белков и называется капсидом. У некоторых вирусов это один-единственный белок, за счет чего достигается большая экономия генетической информации. При этом вирусу не требуется никакого дополнительного механизма формирования капсида – он образуется путем самоорганизации молекул белков. Поэтому многие вирионы имеют правильную геометрическую форму – например, вирионы полиомиелита, ящура, гепатита А – форму икосаэдра. Это роднит вирусы с другими известными нам нанообъектами – наночастицами золота, представляющими мир неорганической природы.

А вот вирус табачной мозаики, открытый Ивановским, имеет форму цилиндра. Его оболочка образуется путем самосборки из 2130 молекул одного белка, которые закручиваются спиралью вокруг молекулы РНК. (Это, как мы помним, впервые обнаружил Джеймс Уотсон, а детально изучила Розалинд Франклин.)

Более сложные вирусы, в частности вирусы гриппа и ВИЧ, заключены в дополнительную оболочку – “конверт”, составленный из компонентов, которые вирус выхватывает из мембран клеток атакуемого им организма. В их число входят и специальные метки (маркерные белки), сигнализирующие: я – свой. Поэтому нашей иммунной системе так сложно справляться с таким вирусом, проникшим в наш организм и размножившимся там.

Отдельного и подробного описания достойны бактериофаги – вирусы, поражающие бактерии, один из примеров идеальных молекулярных машин, созданных Природой.

Чтобы дать вам небольшую передышку в этом потоке научной информации, расскажу об открытии бактериофагов. Первым их обнаружил английский бактериолог Фредерик Туорт в 1915 году. Пришел он к этому открытию весьма извилистым путем. Занимался он вирусом оспы и, следуя Ивановскому и другим предшественникам, пытался размножить вирус в питательном растворе с тем же, впрочем, отрицательным результатом. Вакцины оспы, которые использовались в то время для прививок, были сплошь загрязнены стафилококком, вызывавшим всякие побочные эффекты, но Туорта заинтересовало другое. Он предположил, что эти бактерии выделяют некое вещество, способствующее существованию вирусов оспы, – так он переключился на исследование стафилококка.

В ходе экспериментов по выращиванию культур бактерий Туорт обнаружил некую “заразу”, которая поражала колонии бактерий, проходила через фарфоровый фильтр и размножалась только в присутствии бактерий. Не сомневаюсь, что вы после прочтения предыдущего текста не затруднитесь с выводом: вирус! А вот Туорт этого вывода не сделал. Это тем более удивительно, что сам он занимался именно вирусами. Это пример того, как даже хороший специалист может пройти мимо открытия, не заметив его. Настолько велика сила стереотипа: Туорт твердо знал, что вирусы вызывают заболевания растений, животных и человека, но он-то занимался бактериями! И поэтому в статье, опубликованной в журнале “Ланцет” в 1915 году, Туорт, описав все свойства новой заразы, определил ее как некий фермент, или токсин, выделяемый самими бактериями.

Все это было очень туманно, и научное сообщество сообщения не заметило. В отличие от статьи канадского микробиолога Феликса Д’Эреля, который в 1917 году независимо от Туорта сообщил об обнаружении вирусов, поражающих бактерии, и приписал им корпускулярное строение. Именно ему долгое время приписывали приоритет открытия. Справедливость восстановил француз Жюль Борде (1870–1961), сам много сделавший для изучения бактериофагов и раскопавший старую статью Туорта. Нобелевский лауреат по физиологии и медицине мог позволить себе высшую степень принципиальности – признать преимущество англичанина перед французом.

Что же представляет собой бактериофаг? Он состоит из уже знакомого нам икосаэдрического контейнера, внутри которого хранится нуклеиновая кислота – РНК или ДНК, на которую приходится около половины веса бактериофага. К контейнеру присоединен полый стержень из белковых молекул, замкнутый снизу пластинкой. От конца стержня отходят несколько нитей-фибрилл. Все в целом это вызывает ассоциацию со спускаемым аппаратом космического корабля, предназначенного для мягкой посадки на поверхность далеких планет. Собственно, первая стадия атаки бактериофага на бактерию чем- то напоминает этот процесс.

У бактериофагов нет внутренних источников энергии для самостоятельного движения, поэтому на первый взгляд бактерия сама случайно наталкивается на бактериофаг, как корабль на мину. Тем не менее бактериофаг способен передвигаться, используя микроконвективные потоки в жидкости и свои длинные хвостовые фибриллы в качестве “парусов”. Сигналом к поднятию “парусов” служат некоторые продукты метаболизма бактерии, которые она выбрасывает в окружающую среду. Эти вещества воздействуют на нити фага, заставляя их “распушаться”. Поэтому бактериофаг преимущественно поражает бактерии в определенной стадии их жизненного цикла – незадолго до деления. В этот период они наиболее активны, много едят и много выделяют. В зоны с высокой концентрацией продуктов метаболизма и устремляются бактериофаги, устраивая там “минное поле”.

Поток жидкости подносит бактериофаг к бактерии или наоборот. Фибриллы “ощупывают” поверхность бактерии на предмет того, а подходящий ли это объект для атаки, ведь каждый бактериофаг настроен на определенный вид бактерий – чужого им не надо! Наткнувшись на нужные им рецепторы, фибриллы прочно связываются с ними, заякориваются, а затем изгибаются и прижимают конец стержня к поверхности. В пластинке находится специальный фермент лизоцим, он “прожигает” отверстие в мембране бактерии, в которое входит стержень. Через этот стержень внутрь бактерии “впрыскивается” нуклеиновая кислота из головки бактериофага.

После этого начинается обычный вирусный беспредел, детали которого, кстати, удалось выяснить в значительной мере при помощи все тех же бактериофагов, ведь бактерии – намного более удобный объект для исследований, чем растения и животные. Генетическая информация, поступающая в виде ДНК (РНК) от вируса, перепрограммирует клетку хозяина и подчиняет всю ее жизнедеятельность задаче производства компонентов вируса, то есть его размножения. Используя инфраструктуру бактерии, нуклеиновая кислота бактериофага направляет синтез необходимых ему белков и при этом еще сама реплицируется. Ученые называют это автокаталитическим процессом с ускорением. Образующиеся белки и нуклеиновые кислоты “самособираются” в новые бактериофаги числом от 200 до 1000, а произведенный фермент лизоцим растворяет оболочку бактерии, выпуская этих “убийц” на свободу.

На все про все уходит около 30 минут. Возникает естественный вопрос: почему же бактериофаги, и вирусы в целом, при такой гигантской скорости размножения не заполонили уже всю Землю? Ответ очень прост: недостаток ресурсов. Например, бактериофаги уничтожают в неком пространстве целевой для них вид бактерий, а потом сами превращаются в добычу или “вымирают” естественным образом. Как мы увидим в дальнейшем, у Природы есть и другие способы сдерживать агрессивность вирусов, да и сами вирусы умеют умерять свои аппетиты. Природа устроена очень рационально, нам есть чему у нее поучиться, в том числе у безмозглых вирусов.

Завершая этот раздел, еще раз скажем о том, что мы многое знаем о строении вирусов и о механизме их действия на различные живые организмы. Но при этом многие важные вопросы остаются непроясненными. То есть каждый отдельно взятый ученый считает, что он знает точный ответ, но научное сообщество в целом пребывает в состоянии непрекращающегося спора.

И первый вопрос: являются ли вирусы живыми организмами? Им задавались еще основоположники – Ивановский и Бейеринк, они дали на него диаметрально противоположные ответы, сопроводив их, впрочем, многочисленными оговорками, стершими резкую грань. Вопрос этот философский (в прямом и переносном смысле), поскольку сначала нужно

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату