временного ряда «Курс доллара за период с июня 1992 г. по июнь 2010 г.». В полученной коррелограмме можно увидеть, как меняются коэффициенты автокорреляции (



Судя по табл. 6.3, уровень автокорреляции (АС) между исходными уровнями временного ряда US Dollar 1 постоянно убывает, начиная с первого лага. В свою очередь уровень частной корреляции (РАС) резко снижается уже после первого лага, а после второго лага осциллирующим образом стремится к нулю (фактически колеблется вокруг нуля). Если мы хотим построить модель авторегрессионного процесса AR (
В свою очередь при идентификации авторегрессионной модели со скользящей средней модели ARMA(

Однако попробуем обойтись меньшим числом параметров, а потому сначала будем использовать авторегрессионную модель AR(1) согласно формуле (6.1). После того как в эту формулу вместо
log(USDollar) =
Однако для ввода в EViews следует использовать эту формулу в понятном для программы виде:
log(USDollar) log(USDollar(-l)) с. (6.4)
При этом целесообразно использовать для создания переменных файл USDollar, т. е. файл с исходным временным рядом (с данными за период с июня 1992 г. по июнь 2010 г.), поскольку в этом случае мы сможем получить в EViews прогноз в исходном, а не в логарифмическом виде (рис. 6.4).

Таким образом, мы получили следующий вывод данных по итогам решения уравнения авторегрессии log(USDollar) =
log(USDollar) = 0,103059 + 0,969092 ? log(USDollar(-l)). (6.5)
Однако интерпретация формулы (6.5) не столь очевидна, поскольку она относится к логарифмическому ряду, поэтому с помощью потенцирования этой формулы можно перейти от логарифмов к исходному временному ряду. Поскольку в EViews при логарифмировании исходного временн
EXP(log(USDollar)) = EXP (0,103059) + (EXP 0,969092 ? log(USDollar(-l))). (6.6)
В частности, новое значение свободного члена (константы) в формуле (6.6) легко найти в Excel с помощью функции ЕХР(0,103059) = 1,1085568. В результате исходная линейная функция с константой 6.5, решенная относительно логарифмического временн
USDollar = 1,1085568 ? USDollar(-l)^0,969092. (6.7)
При этом интерпретация формулы (6.7) будет следующей: рост на 1 % курса доллара в текущем месяце в среднем способствовал повышению курса доллара в прогнозируемом месяце на 0,969 % при исходном уровне курса доллара, равном 1,1086 рублей.

Проверим полученную статистическую модель на наличие автокорреляции в остатках. Для проверки будем использовать алгоритм действий № 7 «Как выполняется
По результатам проведения этого теста получилась табл. 6.5, из которой следует, что наблюдается автокорреляция в остатках. Об этом свидетельствует нулевой уровень значимости как основного критерия теста

Чтобы устранить автокорреляцию в остатках, необходимо изменить спецификацию статистической модели. С этой целью попробуем использовать для прогнозирования курса доллара модель авторегрессии со скользящим средним в остатках ARMA(1,1) (см. формулу (6.2)). Однако ввести в EViews эту формулу необходимо в следующем виде:
log(USDollar)
где
log(USDollar(-l)) — логарифм от переменной с лагом в один месяц;
МА(1) — представляет собой скользящую среднюю первого порядка.
При этом следует иметь в виду одну тонкость: в опциях диалогового мини-окна EQUATION ESTIMATION (оценка уравнения) по умолчанию устанавливается параметр BACKCAST МА TERMS (рекурсивное вычисление предыдущей ошибки в МА-процессе). В этом случае значение предыдущей ошибки (отклонения прогноза от фактического курса доллара в прошлом месяце) для точечного прогноза по первому наблюдению находится рекурсивным методом (см. ввод этой опции на рис. 6.5).

Если в параметре BACKCAST МА TERMS убрать «галочку», значение прошлой ошибки в точечном прогнозе для первого наблюдения приравнивается нулю, поскольку оно на тот момент отсутствует. В свою очередь в случае применения в статистической модели скользящей средней второго порядка прошлые