бесконечные ряды морских волн. В правомерности этих образов перестали сомневаться вовсе после трудов Максвелла и Герца, которые доказали, что свет — это просто частный случай электромагнитных колебаний.

Вспомним (мы об этом говорили в первой главе): у всякого колебания есть характеристика — длина волны. Теперь наше утверждение приобретает строгий смысл: «Луч света теряет свои привычные свойства, если размеры препятствия сравнимы с длиной его волны». В этом случае луч света уже не распространяется прямолинейно — происходит явление дифракции. Кроме того, отдельные волны луча начинают взаимодействовать между собой — усиливать и гасить друг друга, или, как принято говорить в физике, начинают интерферировать. Оба явления — дифракция и интерференция — в конечном итоге дают на экране дифракционную картину, которую с точки зрения Ньютона понять довольно трудно. Волновая же теория света объясняет ее вполне естественно, и это определило ее победу.

Cо временем к свойствам света настолько привыкли, что они превратились в некий эталон для всех вообще волновых процессов. Теперь, если в каком-либо процессе замечали вдруг явления интерференции и дифракции, то уже не сомневались в его волновой природе. Потому, собственно, все сразу и признали гипотезу де Бройля о волнах материи, увидев первые снимки дифракции электронов.

Взгляните на три почти одинаковые фотографии на странице 164: слева — дифракция видимого света, справа — дифракция электронов, внизу — волны на воде. Глядя на них, не поверить в волновую природу электрона очень трудно. Для нынешнего поколения физиков это уже не вопрос веры, а факт точного знания и даже средство для технических приложений.

В стройной теории волновой оптики оставалась одна неувязка: луч света мы воспринимаем все-таки как луч, а не как волну. Как объяснить такой факт с точки зрения волновой оптики? Задачу решил Огюстен Жан Френель, и его объяснение можно найти теперь в любом учебнике физики.

Оказывается, при интерференции все волны от источника света гасят друг друга, кроме тех, которые находятся внутри узкого канала толщиной в половину длины волны света. (Для видимого света толщина канала ?/2 ? 3 10-5 см.) Если мы пренебрежем толщиной «светового канала», то получим ту самую траекторию светового луча, к которой все мы привыкли в обычной жизни.

Известен даже способ ее построения: сначала нужно провести линии через все гребни волн — как говорят в физике, отметить фронт волны. А затем от источника света провести линию, которая перпендикулярна к фронту волны. Это и будет траектория светового луча. Если вблизи препятствия фронт волны искажается, то одновременно с этим искривляется и траектория луча — луч света огибает препятствие, происходит, дифракция.

Траектория светового луча

В 1834 году Уильям Роуан Гамильтон (1805–1865), знаменитый профессор астрономии в Дублинском университете, занимался непонятной для современников задачей. Он хотел доказать, что формальная аналогия между траекторией движения частицы и траекторией светового луча имеет строгий математический смысл.

Мы уже знаем: в физике понятию закона движения соответствуют формулы — уравнения движения. Для волн и частиц они совершенно различны: решая одни, мы вычисляем траекторию частицы, решая другие, находим форму и скорость фронта волны. Но мы также знаем, что в оптике можно нарисовать траекторию светового луча, зная движение фронта его волны.

Траектория частицы

Гамильтон доказал, что в механике можно сделать нечто противоположное: заменить траекторию частицы движением фронта некоторой волны. Или более точно: уравнения движения механики можно записать в таком виде, что они полностью совпадут с уравнениями геометрической оптики, которые описывают распространение луча света без учета его волновых свойств. Тем самым Гамильтон доказал оптико-механическую аналогию: движение частицы по траектории можно представить как распространение луча света без учета его волновых свойств.

ВОЛНОВАЯ МЕХАНИКА ШРЕДИНГЕРА

Эрвин Шредингер (1887–1961) в 1911 году окончил Венский университет, где были еще живы традиции Доплера, Физо, Больцмана и весь дух классических времен физики: основательность при изучении явлений и неторопливый к ним интерес. В 1925 году это был уже немолодой профессор Цюрихского университета, сохранивший, однако, юношеское стремление понять самое главное в тогдашней физике: «Как устроен атом? И как в нем движутся электроны?»

В конце 1925 года в одной из статей Эйнштейна Шредингер прочел несколько слов похвалы в адрес де Бройля и его гипотезы. Этих немногих сведений ему оказалось достаточно, чтобы поверить в гипотезу де Бройля о волнах материи и развить ее до логического конца (что всегда трудно, и не только в науке).

Ход его рассуждений легко понять, по крайней мере, теперь, почти полвека спустя. Прежде всего, он вспомнил оптико-механическую аналогию Гамильтона. Он знал, что она доказана лишь в пределе геометрической оптики — тогда, когда можно пренебречь волновыми свойствами света. Шредингер пошел дальше и предположил: оптико-механическая аналогия остается справедливой также и в случае волновой оптики. Это означает, что всегда любое движение частиц подобно явлению распространения волн.

Как и всякое глубокое открытие, гипотеза Шредингера ниоткуда логически не следовала.

Но, как всякое открытие, логические следствия она имела.

Прежде всего, если Шредингер прав, то движение частиц Должно обнаруживать волновые свойства в тех областях пространства, размеры которых сравнимы с длиной Волны этих частиц. В большой степени это относится и к движению электрона в атоме: сравнив формулы де Бройля (? = h/mv) и Бора m (? r = h/2?), легко усмотреть, что диаметр атома d = ?/? примерно в три раза меньше, чем длина волны электрона ?. Но эта длина — единственная, которую мы вспоминаем, когда говорим о размерах электрона в атоме. Теперь становится очевидным, Что представить его в атоме частицей невозможно, ибо тогда придется допустить, что атом построен из таких частиц, которые больше его самого. Отсюда сразу, и немного неожиданно, следует уже известный нам из предыдущей главы постулат Гейзенберга: не существует понятия траектории электрона в атоме.

Действительно, не может нечто большее двигаться внутри чего-то меньшего, и притом еще по какой-то траектории тогда не существует и проблемы устойчивости атома, так как электродинамика запрещает электрону двигаться в атоме лишь по траектории и не отвечает за явления, которые происходят при других типах движений. Все это означает, что в атоме электроны существуют не в виде частиц, а в виде некоторых волн, смысл которых мы поймем немного позже. А пока ясно только одно: какова бы ни была природа этих электронных волн, их движение должно подчиняться волновому уравнению. Шредингер нашел это уравнение. Вот оно:

[(d2 ?)/(d x) + 2m/(h2)][Е — U(x)]? = 0

Волновая механика

Для тех, кто видит его впервые, оно абсолютно непонятно и может возбудить лишь любопытство или чувство инстинктивного протеста, причем последнее без серьезных оснований.

Волны

В самом деле, представленный на этой странице рисунок столь же непонятен, как и уравнение Шредингера, однако мы принимаем его без внутреннего сопротивления. Мы совсем успокоимся, узнав, что это просто герб города Парижа, в котором мы никогда не были и, быть может, никогда не побываем. Только самые дотошные станут допытываться, почему он выглядит именно так, а не иначе. Как и в уравнении

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату