Шредингера, в этом гербе каждая черта и каждый символ исполнены смысла. Вверху — королевские лилии, которые появились в геральдических знаках Франции уже в конце V века — после победы Хлодвига над гуннами у берегов реки Ли. (По преданию, воины Хлодвига, возвращаясь домой, украсили свои шлемы и щиты цветами белых лилий «ли-ли», по-русски «белый-белый»). Внизу герба — корабль, похожий очертаниями на Ситэ — остров посреди Сены, где в древности обитало племя паризиев, по имени которых назван Париж. А форма герба напоминает парус — в память об основном занятии древних обитателей Парижа. Как видите, понять герб несложно, однако только жителям города он по-настоящему близок.

Подойдем к уравнению Шредингера точно так же. Примем его вначале просто как символ квантовой механики, как некий герб квантовой страны, по которой мы теперь путешествуем, и постараемся понять, почему он именно таков. Некоторые штрихи в этом гербе нам уже понятны: m — это масса электрона, h — постоянная Планка h, деленная на 2?, Е — полная энергия электрона в атоме, U(x) — его потенциальная энергия, х — расстояние от ядра до электрона. Несколько сложнее понять символ второй производной d2/dx2, но с этим пока ничего нельзя поделать, вначале придется просто запомнить, что это символ дифференциального исчисления, из-за которого уравнение Шредингера не простое, а дифференциальное.

Самое сложное — понять, что собой представляет ?-функция (читается: пси-функция). Это действительно не просто, и вначале даже сам Шредингер истолковал неправильно ее смысл. Мы также поймем его несколько позднее, а сейчас важно усвоить следующее: несмотря на свою необычность, пси- функция все же как-то представляет движение электрона в атоме. По-другому, чем матрицы Гейзенберга {Xnk} и {Рnk}, но все-таки представляет, и притом хорошо. Настолько хорошо, что с ее помощью многие задачи квантовой механики можно решать значительно проще и быстрее, чем с помощью матриц Гейзенберга.

Физики довольно быстро оценили преимущества волновой механики: ее универсальность, изящество и простоту, и с тех пор почти забросили механику матричную.

Однако победа далась не сразу

ВОКРУГ КВАНТА

ОПЫТ КОМПТОНА

Представьте себе, что вы стоите перед зеркалом в зеленом свитере и вдруг замечаете, что ваше изображение одето в красный свитер. Прежде всего вы, вероятно, протрете глаза, а если это не поможет, пойдете к врачу. Потому что «так не бывает». В самом деле, зеленые лучи — что волны, длина которых ? = 5500 ?. Встретив на пути препятствие — зеркало, они отражаются, но при этом никак не могут изменить свою длину и стать, например, красными (? = 7500 ?). А Комптон наблюдал именно это явление. Направив на мишень пучок рентгеновых лучей с длиной волны ?, он обнаружил, что длина волны рассеянных лучей ?' больше длины волны падающих, то есть рассеянные лучи действительно «краснее» первоначальных!

Чудо это можно понять, если вспомнить гипотезу Эйнштейна о квантах света, которую он предложил для объяснения явлений фотоэффекта. Действительно, в этом случае вместо рентгеновых волн с длиной ? и частотой ? = c/? нужно представлять себе поток частиц — квантов с энергией E = h ?. Сталкиваясь с электронами атомов мишени, они выбивают их оттуда (затратив энергию Р), разгоняют до скорости v (дополнинительно затратив энергию (mv2))/2, а сами рассеиваются с меньшей энергией E' = h v'. Очевидно, что h ? = h ?' + P + (mv2))/2.

Если атом полностью поглотит квант света (E' = 0), то мы увидим обычное явление фотоэффекта, а уравнение Комптона превратится в уравнение Эйнштейна:

h ? = P + (m v2)/2

Оба эти опыта можно провести в камере Вильсона, проследить путь каждого выбитого электрона и тем самым наглядно представить процесс столкновения светового кванта с электроном.

Но в таком случае что нам мешает увидеть себя в красном свитере? Оказывается, все те же квантовые законы, которые запрещают электрону поглощать произвольные порции энергии. Электрон на стационарной орбите в атоме может поглотить только такой квант, который либо перебросит его из одного стационарного состояния в другое, либо выбросит его из атома (вспомните опыт Франка и Герца). Энергия «зеленых квантов» (длина их волны (? = 5,5 10-5 см = 5500?) равна

E = h ? = ((h c)/? = 6,62 10-27 • 3 • 1010)/(5,5 • 10-5) = 3,6 • 10-12

эрг ? 2эв.

А этого слишком мало, чтобы вырвать электрон из атома (нужно впятеро больше, Р ? 10 эв). Поэтому они упруго (без потери энергии) отразятся от атомов зеркала и при этом нисколько не «покраснеют».

Совсем другую картину являют собой рентгеновы лучи (? ? 1 ?). Их энергия примерно в 5—10 тысяч раз больше, и потому явления, которые с ними происходят, иные. Например, они вовсе не отражаются от зеркала, а свободно через него проходят, срывая по пути электроны с его атомов.

Конечно, даже простой процесс отражения зеленого света от зеркала несколько сложнее, чем мы это сейчас представили. Но существует еще одна — главная — трудность: в нашей стройной картине, где вместо волн света сплошь одни только кванты света, нет места опытам Фридриха, Книппинга и Лауэ, которые открыли дифракцию рентгеновых лучей и тем самым доказали их волновую природу.

Как примирить эти несовместимые представления: лучи-волны и лучи-кванты?

В следующей главе мы увидим, что квантовая механика справилась и с этой задачей.

ЭЛЕКТРОН: ЧАСТИЦА ИЛИ ВОЛНА?

Мы не думаем об этом каждый день, точно так же, как и об устройстве телефона. Мы просто пользуемся приборами, в которых электрон «работает», — телевизором, рентгеновским аппаратом, электронным микроскопом. Но если задуматься, как устроены эти аппараты, то вопрос о природе электрона сразу потеряет свой академический характер.

В телевизионной трубке изображение получают с помощью электронов, которые разгоняются напряжением V ? 10 000 в. При этом они приобретают скорость v; ? 5 109 см/сек — всего в шесть раз меньше скорости света. Длину их волны легко вычислить по формуле де Бройля: ? = h/m v, она равна ? ? 0,1 ? то есть в 10 раз меньше размеров атома. И поскольку в телевизоре электроны распространяются прямолинейно, мы их воспринимаем как поток частиц.

В электронном микроскопе тот же электрон работает как волна: пучок электронов разгоняют напряжением в 100000 вольт до скорости 1010 см/сек, что соответствует длине волны в 0,05 ?. Кроме того, этот пучок проходит через систему магнитных линз, точно так же, как в обычном микроскопе луч света проходит через линзы оптические. В волновой оптике хорошо известно, что из-за явлений дифракции даже в лучший микроскоп нельзя разглядеть предмет, если его размеры меньше, чем половина длины волны света, которым он освещен. Длина волны видимого света равна 5000 ?, поэтому в обычный микроскоп можно различать лишь предметы, размеры которых превышают 2500 ?. Размеры бактерий превышают 10-4 см = 10 000 ?, поэтому их легко наблюдать в обычный микроскоп. Но уже вирусы в такой микроскоп различить нельзя: их размеры меньше 1000 ? (например, диаметр вируса гриппа всего 800 ?).

Теоретически электронный микроскоп позволяет разглядеть объекты размером до 0,02 ?, то есть в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату