«морями». Такие промежуточные между чистым двух-трех-кварковым зародышем и реальным адроном состояния называются виртуальными частицами. Виртуальные частицы чрезвычайно краткоживущие образования и не имеют определенной массы, но по всем своим зарядовым свойствам они похожи на реальные адроны (т. е. можно говорить о виртуальном? — мезоне, К-мезоне, антипротоне и т. п., однако именно л-мезоны играют основную роль в виртуальной шубе).
Можно понимать дело так, что виртуальные частицы — это адроны с неполноценной (недоформированной) собственной шубой, или — по-другому — это адроны, чья шуба здорово ободрана в сверхплотной кварк-глюонной среде[209]. Виртуальный адрон может превратиться во вполне реальный, если исходному адрону сообщить достаточную энергию, чтобы он стряхнул свою шубу. При этом все зародыши или их часть (смотря сколько энергии!) попутно обзаводятся собственными развитыми шубами. По сути, большая интенсивность сильных взаимодействий проявляется в большой вероятности таких превращений в результате столкновений энергичных адронов. Обильное появление новых адронов в соударениях при высоких энергиях (процесс множественного рождения) — одно из интереснейших проявлений микромира.
Изображенная здесь картина — это лишь качественные «штрихи к портрету» адронов. Адрон — капризнейший натурщик, искусно скрывающий свой внутренний мир, требующий особых красок и особой живописной техники и вовсе не укладывающийся в привычные рамки атомных и ядерных образов.
2. Взаимодействия
Современная теория рассматривает три типа фундаментальных сил, на основе которых объясняется строение и эволюция вещества.
Электрослабые взаимодействия.
До недавних пор мы знали о двух различных силах природы — электромагнитных и слабых. Первая из них ответственна, например, за строение атомов и излучение фотонов, а вторая за ?-распад (n ' p + e-+?e) и другие процессы такого типа. Интенсивная работа физиков в 60-70-х годах привела к построению единой теории электрослабого взаимодействия. Объединение выглядит особенно естественно, если вспомнить, что еще в середине прошлого века электрические и магнитные явления связывались с различными силами природы, и общая теория электромагнетизма лишь постепенно формировалась в трудах Фарадея и Максвелла. Теперь же оказалось, что слабые силы — своеобразное проявление электромагнетизма на очень малых расстояниях (порядка 10–16 см). Одно из фундаментальных полей — электромагнитное — мы знали давно и даже научились использовать, а три других, соответствующих излучению промежуточных бозонов W± и Z0, заметили сравнительно недавно в связи с процессами слабых распадов.
Таким образом, современная картина электрослабого взаимодействия основывается на четырех фундаментальных бозонных полях и включает в себя поля лептонов и кварков. Элементарный акт взаимодействия между лептонами и (или) кварками выглядит как обмен одним из бозонов. Такой механизм лежит в основе ныне общепринятой схемы описания актов рассеяния и распадов элементарных частиц — квантовой теории поля. Эта схема, хорошо отработанная в области квантовой электродинамики и ныне успешно включившая в себя описание слабых процессов, считается своеобразной нормой теории фактически той линзой, сквозь которую физики пытаются рассмотреть самые глубокие закономерности микромира.
Сильные взаимодействия.
Вступая в область адронов, мы сразу сталкиваемся с проблемами двух уровней — исследованием межкварковых и межадронных сил. Вообще-то соответствующая теория — квантовая хромодинамика (цветодинамика), построенная по образцу электрослабой модели, стремится развить схему, где все процессы хорошо описывались бы взаимодействиями 5 или 6 кварковых и 8 глюонных полей. Межадронные силы должны выводиться из более фундаментальных межкварковых, и все свойства белых адронов следовать из модели цветных кварков и глюонов.
Такой подход многое позволяет сделать, но, к сожалению, далеко не все. Аналогии с предыдущими структурными уровнями — атомномолекулярным и ядерным — довольно быстро выходят из строя при попытках описать адрон в целом, а не только валентные кварки. Суть трудностей весьма грубо можно свести к тому, что при описании адрона (его рождения, гибели, взаимодействия как целого) фактически приходится привлекать картину с очень большим (даже бесконечным) числом кварков и глюонов, причем многочастичные состояния играют принципиальную роль, и не удается ограничиться решением простых двух- или трехчастичных задач.
Эта ситуация очень наглядно проявляется в процессах множественного рождения адронов при высоких энергиях. В актах соударения рождение какого-то количества новых адронов примерно в 4 раза более вероятно, чем упругое рассеяние исходных адронов. Поэтому двухчастичная задача о межадронных взаимодействиях оказывается резко незамкнутой, и, судя по всему, ее не удается свести к рассмотрению парных взаимодействий не только на адронном, но и на кварк-глюонном уровне.
Адрон — неточечная частица, и его рождение нельзя описать как мгновенный акт, происходящий в единственной точке пространства. Скорее речь идет о довольно сложной пространственно-временной эволюции в областях с размером порядка 10–13 см и временных интервалах порядка 10–23 с, когда в начале имеется своеобразный адронный ген (скажем, кварк-антикварковая пара), а в конце — вполне сформировавшийся адрон (скажем,? — мезон с нормальной виртуальной шубой).
Самое любопытное в множественном рождении — коллективный характер формирования шуб у отдельных частиц. Экспериментально это проявляется в том, что большинство образующихся адронов сильно коррелированны друг с другом, словно их появление взаимообусловлено, и они «помнят» о своем происхождении из единого котла. Можно надеяться, что в структуре рождающихся таким образом адронов запечатан их генезис в области взаимодействия — от кварк-партонного зародыша до полноценной частицы. Но квантовая хромодинамика пока не способна восстановить многие важные детали этой картины (и, между прочим, не объясняет сильных корреляций). Эволюция комка кварк-глюонного вещества и формирование в нем сложных адронных структур — те задачи, которые могут потребовать серьезных преобразований всей квантовополевой схемы фундаментальных взаимодействий.
Гравитация.
О гравитационном взаимодействии элементарных частиц мы знаем удивительно мало. По сути, проявления силы тяготения непосредственно между парой частиц, например, протонов, никогда не наблюдались. Беда в том, что из-за фантастической малости гравитационной константы связи (?гр = Gmp2/ ћc B 5,9.10–39 эти силы в любом столкновении частиц легко забиваются другими более интенсивными взаимодействиями. Но такое положение не должно казаться непреодолимым барьером в изучении гравитационных задач микромира. Строго говоря, гравитационный заряд пропорционален не массе покоя частицы, а ее полной энергии, так что при столкновении планковских пучков (Е ~ ЕP ~ 1028 эВ) гравитация должна стать сильным взаимодействием.
На сегодняшний день известно, что такие элементарные частицы, как фотоны и нейтроны, ведут себя в поле крупных космических тел вполне удовлетворительно, то есть отклоняются в соответствии с предсказаниями классической теории тяготения. Астрофизические модели дают хорошие косвенные свидетельства того, что поведение других частиц тоже не противоречит выводам классической теории.
По сути же, современная теория гравитации относится к макроскопическим телам, системам огромного числа элементарных частиц (в типичной звезде порядка N ~ (mP/mp) 3 ~ 7,8.1056 нуклонов). С ньютоновских времен и до первых десятилетий 20 века тяготение рассматривалось как одна из фундаментальных сил природы, и ее особая роль по сравнению, скажем, с кулоновской силой сводилась к простому различию: первая действует между всеми массивными телами, а