разбегание галактик связано с расширением самого пространства, тогда как «разбегание снаряда и Земли» рассматривается в обычном Ньютоновом пространстве…

Сделать окончательный выбор между двумя вариантами горячего или холодного будущего очень трудно — точность измерения Н и, следовательно, ?кр невелика. Но еще сложней оценить наблюдаемую плотность. Совсем еще недавно данные сводились к (совр. ~ (2?5).10– 31 г/см3, то есть Вселенная скорее соответствовала открытой модели. Однако эта плотность оценивалась преимущественно по запасам звездного вещества в галактиках. Считалось, что реликтовый фон фотонов и нейтрино дает вклад в плотность массы на 3 порядка меньше, и этим вкладом фактически можно пренебречь.

С открытием массы нейтрино ситуация может резко измениться. Если число нейтрино, приходящихся на один протон, сохранится на уровне одного миллиарда, то окажется, что в современную эпоху именно нейтрино дают основной вклад в массу Вселенной, и наблюдаемая плотность подскочит до критической черты[109]. С другой стороны, немалая доля массы должна быть сосредоточена в темных объектах — выгоревших звездах. Особые надежды возлагаются на черные дыры, которыми могли завершить свой путь многие звезды первого поколения. Систематическое обнаружение такого рода объектов опять-таки позволило бы поднять оценку наблюдаемой плотности. Но, как мы видели в главе 6, независимо от природы скрытой от наблюдения массы, ее уже обнаружили, и ее плотность, скорее всего, в десятки раз превышает ?совр.

Вообще, наметившаяся тенденция такова, что экспериментальное значение «константы Хаббла» (а значит, и критической плотности) систематически снижалось — в 10 раз за 50 лет! — а оценка средней плотности росла за счет обнаружения новых объектов или новых свойств. Поэтому сейчас закрытая модель с горячим финалом Вселенной представляется наиболее вероятным итогом исследований.

Обобщением закрытой модели является так называемая пульсирующая (или осциллирующая) Вселенная, где циклы расширения и сжатия бесконечно повторяются. Вселенная каждый раз возрождается из Сингулярности и, прожив несколько десятков миллиардов лет, гибнет в ней: что-то вроде буддийских эр, не так ли?

На самом деле выбор между одним или несколькими циклами существования Вселенной может иметь экспериментальный смысл лишь в том случае, если Сингулярность — нечто более сложное, чем в стандартной модели. Иными словами, она должна хоть что-нибудь пропускать из одной эры в другую, скажем, определенный тип элементарных частиц. Было бы очень приятно обнаружить в современном мире следы иных циклов и убедиться, что хоть какие-то объекты способны пережить Большой Взрыв. К сожалению, пока на это нет никаких указаний…

Однако изучение и очень раннего прошлого и финиша в закрытой модели показывает, что именно в Сингулярности кроются наиболее принципиальные проблемы современной космологии.

Сингулярность — классические проблемы

В сущности, Сингулярность, и с физической и с философской точки зрения, объект неудовлетворительный. Мир с бесконечной плотностью материи, стиснутый в одну единственную точку, — сугубо математическая абстракция. Скорее всего, Сингулярность отражает наше незнание истинных законов эволюции в моменты, близкие к Первовзрыву.

Глубокие теоретические исследования последних десятилетий показали, что Сингулярность в рамках эйнштейновской теории тяготения неизбежна — она содержится в общих решениях уравнений классической теории гравитации, а не является следствием каких-либо чрезмерных ее упрощений.

Одно время была надежда, что сингулярное состояние возникает просто из-за неаккуратного описания вещества. Ведь гипотеза о том, что в очень ранние моменты оно представляет собой идеальный релятивистский газ, отнюдь не самоочевидна. Оказалось, что учет так называемой объемной вязкости[110] действительно позволяет убрать Сингулярность. Можно даже представить дело так, что вся эволюция Вселенной выглядит как переход между двумя состояниями с постоянными и вполне конечными плотностями материи в начале и в конце.

Такая точка зрения легко бы вытеснила представления о Сингулярности, если бы за ее торжество не приходилось платить непомерную цену. Дело в том, что само предположение о выдающейся роли объемной вязкости в начальной фазе сверхгорячего вещества очень трудно оправдать данными о вязких средах. То, что вязкость может выйти на первый план в поздние космологические эпохи и даже определить будущее Вселенной, гораздо правдоподобней. Не слишком сильным, но приятным утешением для программы вязких моделей служит вытекающее из них предсказание, что благодаря почти незаметной в начале вязкости открытая Вселенная должна в далеком будущем перейти в стационарный режим с постоянной и, возможно, не слишком малой плотностью вещества.

Однако главным тормозом на пути такого рода борьбы с Сингулярностью оказались так называемые анизотропные модели.

Изотропия (равноправие всех трех направлений в пространстве) принята в стандартной фридмановской картине просто на основе того факта, что наблюдаемые на больших расстояниях галактики распределены равномерно по всем направлениям. Изотропно, согласно современным данным, и реликтовое излучение. Значит, можно предположить, что, по крайней мере, с момента отрыва излучения выделенных направлений не было. Но сохранялось ли такое положение вплоть до Сингулярности — вот в чем вопрос!

А вдруг непосредственно после Первовзрыва Вселенная была резко анизотропной, и за какие-то доли первой секунды следы неэквивалентности направлений затерялись? Уравнения Эйнштейна или какие- то общие соображения такую возможность вовсе не исключают. Ясно, что она не самая простая, но простота — не тот аргумент, когда речь идет о весьма серьезном обобщении.

Отнюдь не обязательно, чтобы пространство вышло из точки сразу в привычной 3-мерной форме, одно или два независимых направления в нем сначала могли быть заметно подавлены. Это порождает очень интересные и глубокие исследования ранней Вселенной, даже независимо от несколько фантастической гипотезы эволюции размерности физического пространства.

Анизотропия начисто забивает сколь угодно сильную вязкость в пределе t (0, и Сингулярность восстанавливается. Именно с помощью анизотропных моделей удалось выяснить характер общих решений эйнштейновских уравнений в самые ранние моменты и показать, что особая точка из них не устраняется. Это в какой-то степени возвращает проблему Сингулярности к исходным позициям, однако с очень важным дополнением, судя по всему, решить ее в рамках классической теории гравитации вообще нельзя.

В свою очередь, анизотропный подход породил серьезную физическую проблему — в лабораторных экспериментах ничего подобно неравноправию пространственных направлений пока не наблюдалось. Не исключено, что никаких современных проявлений анизотропии пространства измерить нельзя ни в галактических, ни тем более в земных масштабах. Информация о ней может быть запечатана лишь в реликтах самых первых мгновений, скажем, в гравитационном излучении эпохи Первовзрыва. В таком случае мы столкнулись бы с чисто космологическим законом физики, практически не играющим роли в меньших масштабах.

Нечто специфически космологическое использовалось теоретиками и раньше. Сам Эйнштейн строил в 1917 году первые космологические решения своей теории в виде статического распределения вещества в пространстве положительной кривизны. Для этого ему пришлось дополнить свои уравнения, вводя в них особую размерную константу (так называемый «космологический член» или «? — член»). Фактически с этой константой в физику должна была войти новая сила отталкивания, не имеющая аналогий в ньютоновском законе тяготения и заметная только в космологических масштабах. Эйнштейн сам характеризовал это обобщение, как «неоправдываемое нашими действительными знаниями о гравитации».

Его решение описывало в среднем вечный и неизменный мир, где вообще не было никаких неприятностей, вроде Сингулярности. То, что этот мир скучен, а ? — член выглядит искусственно, полбеды. Хуже другое — в нем нет эффекта Хаббла, и он неустойчив по отношению к самым малым возмущениям. Любое такое возмущение неизбежно подтолкнуло бы его к сжатию или расширению, независимо от наличия

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату