стадии планетной космогонии. Вообще нельзя не отметить, что даже Солнечная система (не говоря уж о планетных мирах далеких звезд) изучена довольно слабо. После всех открытий прошлых веков, рассмотренных в предыдущей части, это может показаться ученым скромничанием, однако же, это факт.

Попробуем оценить его простейшим образом. Плутон находится в среднем в 40 астрономических единицах от Солнца. О том, что находится за этой экзотической планетой, мы почти ничего не знаем[138].

Между тем, общий размер Солнечной системы не менее 200 тыс. астрономических единиц (порядка 1 парсека). Вплоть до таких расстояний Солнце должно оказывать основное гравитационное влияние на все объекты (на больших расстояниях в игру вмешиваются ближайшие звезды). Так вот, с этой точки зрения неплохо изученный объем составляет (40/200000)3 ~ 8.10–12 примерно одну стомиллиардную часть! За орбитой Плутона могут находиться десятки планет и целые астероидные пояса, более того что-то такое там непременно должно быть, поскольку высокоточная современная теория движения внешних планет (Урана, Нептуна, Плутона) и кометы Галлея все еще находится в неудовлетворительном согласии с наблюдениями. Одна или несколько неоткрытых трансплутоновых планет систематически действуют на параметры известных орбит[139]. Для поиска этих объектов нужно проводить систематические исследования заплутонова пространства на предельно мощных телескопах и в перспективе — с помощью космических зондов. В сфере этих поисков, возможно, кроются ответы на принципиальные проблемы космогонии, в частности, оценка размеров протозвездного облака[140].

Итак, нарисованная картина может заметно измениться во многих деталях, но существуют и совсем иные точки зрения. Например, в течение многих десятилетий советский астрофизик В. А. Амбарцумян и его школа развивают представления, противоположные «пылевой космогонии». Их позиция основана на гипотезе образования космических структур из неких сверхплотных зародышей (сгустков так называемого дозвездного вещества). Структуры должны возникать в результате взрывообразной эволюции зародышей. Наблюдательной основой гипотезы служит высокая активность многих галактических ядер и относительно высокий темп звездообразования. Этот не слишком модный в наши дни подход сыграл важную роль, постоянно привлекая внимание к мощным нестационарным процессам во Вселенной. Однако в идее зародышей заложено несколько больше, чем может показаться. В широком плане речь идет о том, как и когда был дан стартовый выстрел для формирования структур в масштабах, промежуточных между Вселенной в целом и отдельными элементарными частицами. Начался ли этот процесс только после синтеза всех известных частиц, когда они представляли собой уже достаточно охлажденный газ, или он протекал параллельно и оставил после себя совершенно экзотические объекты, прячущиеся в труднодоступных для наблюдения местах типа галактических центров? Вспомним о тех же микрозвездах и реликтовых дырах…

Не исключено, что истина лежит где-то посредине и в очень ранних космогонических фазах активность реликтовых образований действительно крайне важна, а несколько позже основную роль начинают играть более или менее понятные процессы гравитационной конденсации холодного газопылевого вещества.

В любом случае, тем, кто посвятил или собирается посвятить себя космогоническим моделям, еще долго не грозит смерть от скуки.

Эволюция Земли и других планет

Рассмотрим теперь в самых общих чертах, как протекало формирование Земли. Наша планета дает уникальный пример успешного прохождения химической и биологической эволюции, и, конечно, очень интересно выяснить, насколько ход этой эволюции естественен. Иными словами, не возникают ли в ходе анализа какие-то крайне маловероятные факторы, делающие результаты земной эволюции предельно редким космическим событием?

По современным астрофизическим и геофизическим данным, Земля образовалась примерно 4,6 млрд. лет назад. Вещество, из которого состояло протоземное облако, наверняка сильно отличалось по составу от водородно-гелиевой смеси. Видимо, около 10 млрд. лет назад в области Солнечной системы началось интенсивное обогащение тяжелыми элементами. Неплохое представление о химическом спектре в районе земной орбиты дают метеориты, а среди них преобладают каменные и железные с примесями кислородо-связывающих веществ. Именно анализ метеоритов позволяет нам восстановить элементный состав протопланетного облака, каким оно было 4,5 5 млрд. лет назад.

Конденсация протопланетного вещества под действием сил тяготения ведет к образованию твердого и компактного тела, внутри которого развивается давление, препятствующее дальнейшему сжатию. Однако не слишком большая исходная масса позволяет достичь весьма умеренных температур в недрах планеты. В большей части своего объема она сохраняет кристаллическую структуру.

Основным процессом геологической эволюции является гравитационная дифференциация — процесс, в котором более тяжелые вещества опускаются к центру планеты, а более легкие поднимаются к поверхности. Из-за этого Земля оказалась, в конечном счете, весьма неоднородной по плотности (12,68 г/см3 в центре при средней плотности 5,52 г/см3).

Дифференциация ведет к потере потенциальной энергии опускающихся слоев и некоторому уменьшению радиуса планеты. Потенциальная энергия выделяется в тепловой форме во внутренних слоях. Полное энерговыделение этого источника оценивается примерно в 1,6.1031 Дж, что с учетом возраста Земли приводит к очень приличной средней мощности (порядка 1014 Ватт!). Из-за уменьшения радиуса должна несколько увеличиваться скорость вращения — чтобы момент количества движения сохранялся.

Другой важный источник земной энергии — распад радиоактивных элементов. Оценки показывают, что такой распад выделил порядка 56 % от энергии дифференциации. Очень важно, что в ранние моменты формирования Земли радиоактивные изотопы генерировали значительно большее (в 4–7 раз) количество энергии, чем теперь, и, конечно, то, что в процессе гравитационной дифференциации изотопы вместе с силикатами концентрировались в коре и верхней мантии.

Отсюда видно, что наша планета представляет довольно мощный энергетический источник, причем в первый период ее существования она была особенно активна. Много энергии, несомненно, рассеялось в космическом пространстве, но значительная часть ее сохранилась в недрах, что способствовало длительному поддержанию разогрева и плавлению вещества в значительных объемах[141]. Картина ранней Земли очень сильно отличалась от того, что мы наблюдаем сейчас, и особенно это касается состава атмосферы и коры.

Первоначально основные элементы атмосферы и гидросферы Земли находились в связанном состоянии — в составе твердых веществ. Большая часть летучих веществ испарилась еще при нагревании протопланетного облака Солнцем. Поэтому процентное содержание легчайших элементов на Земле значительно меньше, чем в среднем по Солнечной системе.

Гравитационный и радиационный разогрев Земли быстро привел к развитию мощных вулканических процессов, формирующих как кору, так и атмосферу. Самая ранняя атмосфера состояла, по-видимому, из очень разреженной смеси азота, аммиака и инертных газов. Вулканы стали насыщать ее водяным паром, углекислым газом и некоторыми другими газами, выпаренными из верхней мантии. Одновременно шел процесс выплавления основных пород коры. Без учета парниковых эффектов температура поверхности древнейшей Земли оценивается градусов в 15, что допускает конденсацию водяных паров и образование гидросферы. Мировой океан с самого начала активно насыщался продуктами вулканической деятельности — примеси попадали в него из атмосферных газов и за счет интенсивного вымывания вещества из горных пород. Свободного кислорода ни в тонкой атмосфере, ни в океане на этом этапе практически не было.

К концу катархея — так называют эпоху первого миллиарда лет от образования Земли — жесткое ультрафиолетовое излучение Солнца, свободно проникающее к поверхности океана, вызвало в обогащенном химическими соединениями «бульоне» ускоренное зарождение сложных органических

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату