Еще более разительно Земля отличается от больших планет. Дело не только в простом отличии таких параметров, как радиус и масса Юпитера и Земли. За существенно иной массой (МЮп/ Мa = 318) кроется совершенно иной ход эволюции. Исходным материалом юпитерианского протопланетного облака послужил водород и гелий, что неплохо отражается в составе его нынешней атмосферы (примерно 87 частей водорода на 13 частей гелия). Фактически Юпитер — «недоразвитая звезда», окажись его исходная масса раз в 10 больше, мы имели бы счастье стать обитателями двойной звездной системы. По современным расчетам, юпитерианское протопланетное облако было примерно в 1000 раз больше современного Юпитера, и его светимость достигала почти 1024 Вт (т. е. нескольких десятых процента от современной светимости Солнца!). Переход в наблюдаемое состояние за счет гравитационного сжатия произошел довольно быстро — примерно за 10 млн. лет. Но и теперь Юпитер, сжимаясь на 10 сантиметров за столетие, обеспечивает высокое избыточное излучение. Его судьба позволяет понять, что происходит с протооблаком недостаточно высокой массы, неспособным войти в режим термоядерного реактора. Под водородно-гелиевой атмосферой толщиной порядка 1400 км, располагается океан жидкого водорода «глубиной» около 16 тысяч километров (в нем могла бы легко потонуть Земля). Когда давление достигает 3 млн. бар, водород переходит твердую фазу. Толщина сферической оболочки из металлического водорода более 43 тыс. километров, наконец, в центре располагается относительно небольшое (R ~ 11 тыс. км) ядро из горных пород. Очень похожим строением, видимо, обладает и Сатурн.
Разумеется, было бы нелепо ожидать от планет такого рода сколь-нибудь похожей на земную химико-биологической эволюции. Тем более трудно предположить нечто подобное для слишком далеких от Солнца Урана и трансурановых планет.
В целом современная точка зрения сводится к тому, что ни на одной из планет Солнечной системы не может существовать жизни земного образца. Уникальность земной жизни неплохо объясняется положением протоземного облака относительно центрального светила и исходным химическим составом этого облака, хотя в схеме объяснения наверняка есть немало весьма дискуссионных мест. Конечно же, конденсация силикатно-железной пыли массой порядка Мa на расстоянии порядка одной астрономической единицы от желтого карлика не ведет к однозначному выводу о появлении там через 4–5 миллиардов лет разумных существ, но зато ни на одном из этапов такой эволюции не видно пока слишком невероятных событий, разрывающих рассмотренную цепочку.
Зоогоническая фаза как космологический закон
Хотя мы вовсе не уверены, что появление жизни во Вселенной представляет собой столь же универсальное явление, как образование галактик, звезд и планетных систем, необходимо тем или иным образом задать этот феномен как закономерное следствие предшествующих стадий эволюции.
Последовательность событий, приводящая к зарождению и развитию жизни, представляется чем-то вроде цепочки реакторов.
Самый мощный из них — Сингулярность (или, вероятней всего, ее планковская окрестность) — работает не слишком понятным для нас образом, но в результате работы этого гравитационного суперреактора появляется пространство-время и зародыши будущих элементарных частиц (а возможно, и непосредственно некоторые частицы — фотоны, лептоны, кварки и гравитоны, если не выяснится их более тонкая структура). В эпоху t ~ 10-6-10-5 сек. Вселенная начинает работать как реактор адронного синтеза — из кварков образуются адроны. Позднее, в более холодной ситуации Вселенная становится термоядерным реактором, осуществляющим синтез водорода в гелий-4.
Еще позднее Вселенная разбивается на отдельные реакторы (галактики и звезды первого поколения), где в процессе сжатия происходит синтез более тяжелых элементов. Благодаря выходу этих реакторов во взрывной режим, космос химически обогащается, и некоторые не слишком горячие объекты, например, планеты у звездных систем 2-го поколения — становятся мощными химическими реакторами, где синтезируются различные молекулярные соединения. Когда химические соединения делаются достаточно сложными и многообразными, возникает основа для дальнейшего усложнения структур. В относительно тонком приповерхностном слое некоторых планет создается своеобразный биологический реактор, продуцирующий относительно устойчивые молекулярные комплексы, способные к длительному обмену энергией и веществом с окружающей средой. Если условия этого обмена, способствующие устойчивости комплекса, каким-то образом кодируются в его структуре (в виде информации, записанной на молекулярном уровне), то комплексы начинают репродуцироваться в наиболее приспособленной к данным условиям форме. Вариация условий окружающей среды — радиационного, температурного и химического режимов по необходимости приводит либо к гибели образований, либо к их усложнению, допускающему более широкую адаптацию. Так появляются первые живые существа — безъядерные клетки, способные в некоторой степени регулировать отношения с окружающей средой.
Биологический реактор на протяжении миллиардов лет генерирует все усложняющиеся живые структуры, пока не возникает человек с характерным социальным типом передачи части наследственной информации и формирующейся на этой основе культурной сферой, которая открывает путь к особо активному воздействию на окружающую среду.
Цивилизации древнего мира — тот первый рубеж, когда действие социокультурных факторов обретает тот же порядок эффективности, что и факторов экологических. Впоследствии в связи с наступлением технологической эры первые начинают преобладать. Можно говорить даже о формировании своего рода социокультурного реактора, продуцирующего высокоорганизованные структуры, которые способны моделировать и реконструировать в процессе моделирования окружающую среду.
Именно в этой фазе жизнь (разумная жизнь!) становится космически значимым фактором. Биологический реактор, однажды появившись, способен преобразовать поверхностный слой отдельной планеты[147]. Социокультурный реактор, овладевший преобразованиями энергии в планетарных масштабах, приводит к экспансии инженерной деятельности в околопланетное и околосолнечное пространство с вполне вероятным (и уже наблюдаемым) созданием там более или менее крупных искусственных объектов. Разумеется, такие объекты не могут рассматриваться в рамках обычной космогонии. Закон, в соответствии с которым через 4–5 млрд. лет планеты первого поколения у молодых звезд типа Солнца должны порождать искусственные спутники или по-другому — обычные звезды второго поколения должны порождать радиозвезды третьего поколения (скажем, маяки для посылки межзвездных сигналов), выглядел бы нелепо без учета жизни как особого космического феномена.
Включив фрагментарное описание этого феномена во II часть книги, посвященную современной картине естественной эволюции, я хотел бы подчеркнуть следующее.
Независимо от проблемы Контакта, которую мы подробно обсудим в III части, жизнь в ее биологическом и социокультурном аспектах представляет собой совершенно необходимый и естественный элемент современной космогонии.
Традиционное резкое деление природы на живую и неживую, унаследованное нами из науки 18 и первой половины 19 веков — доэволюционной науки, объективно лишь постольку, поскольку существует значительная разница в методах физики, изучающей элементарные структуры, и биологии и социологии, имеющих дело со сверхсложными структурами.
Наблюдаемая сейчас тенденция к синтезу научного знания связана с исследованием сложных систем. Физика пытается освоить непривычную для себя область объектов, свойства которых зависят от уровня структурной организации. Биосоциальные науки так или иначе стремятся объяснить многие особенности своих объектов, разлагая их на относительно простые подсистемы.
В той мере, в какой этот синтез захватывает наши представления о Вселенной, мы вынуждены строить единую космогоническую картину, где некоторые молодые звезды второго поколения задолго до завершения своей энергетической эволюции способны генерировать третье поколение искусственных космических объектов с необычными свойствами.
Разумеется, это предъявляет особо высокие требования к анализу предыдущих этапов эволюции.