Preorder(t^.left);
Preorder(t^.right);
End;
End;
3.2. Procedure Inorder(t : TreeLink);
Begin
If t <> nil then
Begin
Inorder(t^.left);
Writeln(t^.inf);
Inorder(t^.right);
End;
End.
3.3. Procedure Postorder(t : TreeLink);
Begin
If t <> nil then
Begin
Postorder(t^.left);
Postorder(t^.right);
Writeln(t^.inf);
End;
End.
4. В бинарном упорядоченном дереве удалить узел с заданным значением ключевого поля.
Опишем рекурсивную процедуру, которая будет учитывать наличие требуемого элемента в дереве и количество потомков этого узла. Если удаляемый узел имеет двух потомков, то он будет заменен самым большим значением ключа в его левом поддереве, и только после этого он будет окончательно удален.
Procedure Delete1(x : Byte; var t : TreeLink);
Var p : TreeLink;
Procedure Delete2(var q : TreeLink);
Begin
If q^.right <> nil then Delete2(q^.right)
Else
Begin
p^.inf := q^.inf;
p := q;
q := q^.left;
End;
End;
Begin
If t = nil then
Writeln('искомого элемента нет')
Else if x < t^.inf then
Delete1(x, t^.left)
Else if x > t^.inf then
Delete1(x, t^.right)
Else
Begin
P := t;
If p^.left = nil then
t := p^.right
Else
If p^.right = nil then
t := p^.left
Else
Delete2(p^.left);
End;
End.
ЛЕКЦИЯ № 10. Графы
1. Понятие графа. Способы представления графа
Граф – пара G = (V,E), где V – множество объектов произвольной природы, называемых вершинами, а Е – семейство пар ei = (vil, vi2), vijOV, называемых
Если е = <u,v>, то вершины v и и называются концами ребра. При этом говорят, что ребро е является смежным (инцидентным) каждой из вершин v и и. Вершины v и и также называются
Степень вершины графа – это число ребер, инцидентных данной вершине, причем петли учитываются дважды. Поскольку каждое ребро инцидентно двум вершинам, сумма степеней всех вершин графа равна удвоенному количеству ребер: Sum(deg(vi), i=1…|V|) = 2 * |E|.
Вес вершины – число (действительное, целое или рациональное), поставленное в соответствие данной вершине (интерпретируется как стоимость, пропускная способность и т. д.). Вес, длина ребра – число или несколько чисел, которые интерпретируются как длина, пропускная способность и т. д.
Граф называется связным, если существует путь между любыми двумя его вершинами, и несвязным – в противном случае. Несвязный граф состоит из нескольких связных компонент (связных подграфов).
Существуют различные способы представления графов. Рассмотрим каждый из них в отдельности.
1. Матрица инцидентности.
Это прямоугольная матрица размерности n х щ, где n – количество вершин, am – количество ребер. Значения элементов матрицы определяются следующим образом: если ребро xi и вершина vj инцидентны, то значение соотвествующего элемента матрицы равно единице, в противном случае значение равно нулю. Для ориентированных графов матрица инцидентности строится по следующему принципу: значение элемента равно – 1, если ребро xi исходит из вершины vj, равно 1, если ребро xi заходит в вершину vj, и равно О в противном случае.
2. Матрица смежности.
Это квадратная матрица размерности n х n, где n – количество вершин. Если вершины vi и vj смежны, т. е. если существует ребро, их соединяющее, то соответствующий элемент матрицы равен единице, в противном случае он равен нулю. Правила построения данной матрицы для ориентированного и неориентированного графов не отличаются. Матрица смежности более компактна, чем матрица инцидентности. Следует заметить, что эта матрица также сильно разрежена, однако в случае