операндов, тот же, что и при сложении, т. е. используется флаг переноса cf. Нужно только представлять себе процесс вычитания в столбик и правильно комбинировать команды микропроцессора с командой sbb.
В завершение обсуждения команд сложения и вычитания отметим, что кроме флагов cf и of в регистре eflags есть еще несколько флагов, которые можно использовать с двоичными арифметическими командами. Речь идет о следующих флагах:
1) zf – флаг нуля, который устанавливается в 1, если результат операции равен 0, и в 1, если результат не равен 0;
2) sf – флаг знака, значение которого после арифметических операций (и не только) совпадает со значением старшего бита результата, т. е. с битом 7, 15 или 31. Таким образом, этот флаг можно использовать для операций над числами со знаком.
Для умножения чисел без знака предназначена команда
mul сомножитель_1
Как видите, в команде указан всего лишь один операнд-сомножитель. Второй операнд- сомножитель_2 задан неявно. Его местоположение фиксировано и зависит от размера сомножителей. Так как в общем случае результат умножения больше, чем любой из его сомножителей, то его размер и местоположение должны быть тоже определены однозначно. Варианты размеров сомножителей и размещения второго операнда и результата приведены в таблице 10.
Из таблицы видно, что произведение состоит из двух частей и в зависимости от размера операндов размещается в двух местах – на месте сомножитель_2 (младшая часть) и в дополнительном регистре ah, dx, edx (старшая часть). Как же динамически (т. е. во время выполнения программы) узнать, что результат достаточно мал и уместился в одном регистре или что он превысил размерность регистра и старшая часть оказалась в другом регистре? Для этого привлекаются уже известные нам по предыдущему обсуждению флаги переноса cf и переполнения of:
1) если старшая часть результата нулевая, то после операции произведения флаги cf = 0 и of = 0;
2) если же эти флаги ненулевые, то это означает, что результат вышел за пределы младшей части произведения и состоит из двух частей, что и нужно учитывать при дальнейшей работе.
Для умножения чисел со знаком предназначена команда
[imul операнд_1, операнд_2, операнд_3]
Эта команда выполняется так же, как и команда mul. Отличительной особенностью команды imul является только формирование знака.
Если результат мал и умещается в одном регистре (т. е. если cf = of = 0), то содержимое другого регистра (старшей части) является расширением знака – все его биты равны старшему биту (знаковому разряду) младшей части результата. В противном случае (если cf = of = 1) знаком результата является знаковый бит старшей части результата, а знаковый бит младшей части является значащим битом двоичного кода результата.
Для деления чисел без знака предназначена команда
div делитель
Делитель может находиться в памяти или в регистре и иметь размер 8, 16 или 32 бит. Местонахождение делимого фиксировано и так же, как в команде умножения, зависит от размера операндов. Результатом команды деления являются значения частного и остатка.
Варианты местоположения и размеров операндов операции деления показаны в таблице 11.
После выполнения команды деления содержимое флагов неопределенно, но возможно возникновение прерывания с номером 0, называемого «деление на нуль». Этот вид прерывания относится к так называемым исключениям. Эта разновидность прерываний возникает внутри микропроцессора из-за некоторых аномалий во время вычислительного процесса. Прерывание О, «деление на нуль», при выполнении команды div может возникнуть по одной из следующих причин:
1) делитель равен нулю;
2) частное не входит в отведенную под него разрядную сетку, что может произойти в следующих случаях:
а) при делении делимого величиной в слово на делитель величиной в байт, причем значение делимого в более чем 256 раз больше значения делителя;
б) при делении делимого величиной в двойное слово на делитель величиной в слово, причем значение делимого в более чем 65 536 раз больше значения делителя;
в) при делении делимого величиной в учетверенное слово на делитель величиной в двойное слово, причем значение делимого в более чем 4 294 967 296 раз больше значения делителя.
Для деления чисел со знаком предназначена команда
idiv делитель
Для этой команды справедливы все рассмотренные положения, касающиеся команд и чисел со знаком. Отметим лишь особенности возникновения исключения 0, «деление на нуль», в случае чисел со знаком. Оно возникает при выполнении команды idiv по одной из следующих причин:
1) делитель равен нулю;
2) частное не входит в отведенную для него разрядную сетку.
Последнее в свою очередь может произойти:
1) при делении делимого величиной в слово со знаком на делитель величиной в байт со знаком, причем значение делимого в более чем 128 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —128 до + 127);
2) при делении делимого величиной в двойное слово со знаком на делитель величиной в слово со знаком, причем значение делимого в более чем 32 768 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —32 768 до +32 768);
3) при делении делимого величиной в учетверенное слово со знаком на делитель величиной в двойное слово со знаком, причем значение делимого в более чем 2 147 483 648 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от —2 147 483 648 до +2 147 483 647).
В системе команд микропроцессора есть несколько команд, которые могут облегчить программирование алгоритмов, производящих арифметические вычисления. В них могут возникать различные проблемы, для разрешения которых разработчики микропроцессора предусмотрели несколько команд.
Что делать, если размеры операндов, участвующих в арифметических операциях, разные? Например, предположим, что в операции сложения один операнд является словом, а другой занимает двойное слово. Выше сказано, что в операции сложения должны участвовать операнды одного формата. Если числа без знака, то выход найти просто. В этом случае можно на базе исходного операнда сформировать новый (формата двойного слова), старшие разряды которого просто заполнить нулями. Сложнее ситуация для чисел со знаком: как динамически, в ходе выполнения программы, учесть знак операнда? Для решения подобных проблем в системе команд микропроцессора есть так называемые команды преобразования типа. Эти команды расширяют байты в слова, слова – в двойные слова и двойные слова – в учетверенные слова (64-разрядные значения). Команды преобразования типа особенно полезны при преобразовании целых со знаком, так как они автоматически заполняют старшие биты вновь формируемого операнда значениями знакового бита старого объекта. Эта операция приводит к целым значениям того же знака и той же величины, что и исходная, но уже в более длинном формате. Подобное преобразование называется
Существуют два вида команд преобразования типа.