если нет других вариантов.

Из многочисленных типов и конструкций выключателей на практике наибольшее распространение получили масляные выключатели с большим объемом масла, выключатели с малым объемом масла и воздушные выключатели. Все более широкое применение получают элегазовые и вакуумные выключатели.

Общими для всех выключателей основными конструктивными частями являются токопроводящие и контактные системы с дугогасительными устройствами, изоляционные конструкции, корпуса и вспомогательные элементы (газоотводы, предохранительные клапаны, указатели положения и др.), передаточные механизмы и приводы.

4.2.2. Обслуживание масляных выключателей

Масляные выключатели бывают с большим объемом масла (серий МКП, У, С и др.) и маломасляные выключатели (серий ВМГ, ВМП, МГГ, ВМК и др.).

В баковых масляных выключателях с большим объемом масла используется масло как для гашения дуги, так и для изоляции токопроводящих частей от заземленных конструкций.

В маломасляных выключателях масло используется в основном для гашения дуги и может быть при необходимости использовано для изоляции от земли частей, находящихся под напряжением. Их баки специально изолируются от земли.

Гашение дуги в масляных выключателях обеспечивается воздействием на нее масла, которое является дугогасящей средой. При этом образуется сильный нагрев, сопровождающийся разложением масла и образованием в камере выключателя газа с температурой газовой смеси, достигающей 2500 К.

Высокую дугогасящую способность масла определяет наличие в газовой смеси до 70 % водорода. Быстрое нарастание давления в газовой смеси до 3–8 МПа способствует эффективной деионизации межконтактного пространства в выключателе.

При расхождении контактов дуга гаснет в момент прохождения тока через нулевое значение, поскольку в это время мощность к ней не подводится, температура дуги падает и дуговой промежуток практически теряет проводимость.

Однако дуга может повториться, что зависит от двух противоположных друг другу факторов: скорости нарастания восстанавливающегося напряжения, стремящегося пробить промежуток между контактами, и от скорости нарастания изолирующих свойств промежутка, препятствующих пробою. Отсюда ясно, что если скорость восстановления напряжения на контактах полюса выключателя окажется выше скорости восстановления изолирующих свойств среды, то дуга вновь загорится и процесс ее гашения повторится.

В современных масляных выключателях используются эффективные дугогасящие устройства, которые ускоряют восстановление электрической прочности межконтактного промежутка. Также снижению скорости восстановления напряжения способствуют шунтирующие резисторы, присоединяемые параллельно главным контактам дугогасительных камер, которые применяются в некоторых типах выключателей.

Кроме того, на длительность горения дуги влияет сила отключаемого тока, с увеличением которого происходит более сильное газообразование и, следовательно, более успешное гашение дуги.

При малых токах отключения гашение дуги затягивается, так как ее энергии оказывается недостаточно для эффективного гашения.

При отключении токов намагничивания процесс гашения дуги сопровождается возникновением перенапряжений, связанных с обрывом тока до момента его прохождения через нуль. Перенапряжения приводят к повторным пробоям. В этих случаях целесообразно применение шунтирующих резисторов, позволяющих снизить кратность перенапряжений. С этой же целью шунтирующие резисторы целесообразно применять и при отключении зарядных токов ЛЭП, так как через них разряжается емкость отключаемых линий.

Важную роль при гашении дуги играет и высота слоя масла над контактами. С увеличением слоя масла возрастает давление в газовом пузыре и интенсивней проходит процесс деионизации. Однако высокий уровень масла в баке снижает объем воздушной подушки, что может привести к повышению давления внутри бака и сильному удару масла в его крышку.

При небольшом слое масла над контактами горючие газы, проходя через него, не успевают охладиться, и в результате соединения с кислородом воздуха могут образовать гремучую смесь.

Большое значение в выключателе имеет скорость расхождения контактов. При высокой скорости их движения дуга быстро достигает своей критической длины, при которой восстанавливающее напряжение становится недостаточным для пробоя большого промежутка. Эффективным способом увеличения скорости удлинения дуги является увеличение числа последовательных разрывов в каждом полюсе выключателя.

На скорость движение контактов отрицательно влияет вязкость масла в выключателе, которая возрастает с понижением температуры масла.

Существенное влияние на скоростные характеристики масляных выключателей оказывают загрязнение и загустение смазки трущихся частей приводов и передаточных механизмов, так как при этом замедляется скорость движения контактов вплоть до их остановки и зависания. Это следует учитывать при очередных ремонтах, в процессе которых необходимо удалить старую смазку и заменить ее на новую консистентную незамерзающую смазку, например, марок ЦИАТИМ-201, ЦИАТИМ-221.

Для отключения и включения выключателей используют электромагнитные, пневматические или пружинные приводы.

По способу включения и отключения приводы бывают полуавтоматические и автоматические.

Выключатель с полуавтоматическим приводом включают вручную, а отключают как вручную, так и дистанционно от релейной защиты. Автоматические приводы осуществляют включение и отключение выключателя как дистанционно от релейной защиты, так и вручную.

Привод выключателя состоит из следующих основных частей:

силовое устройство, служащее для преобразования подведенной энергии в механическую;

передаточный и операционный механизмы, служащие для передачи движения от силового устройства к механизму выключателя и для удержания его во включенном положении;

отключающее устройство.

Электромагнитные приводы постоянного тока применяются для управления всеми типами масляных выключателей 10—220 кВ.

Электромагнитный привод представляет собой корпус с электромагнитом включения и операционным механизмом. В корпусе размещены также электромагнит отключения, контакты вспомогательных цепей, механизм ручного отключения и жестко связанный с валом указатель положения выключателя.

Рассмотрим кратко принцип работы и схему управления электромагнитного привода выключателей; при этом остановимся на тех элементах электромагнитного привода, с которыми чаще всего приходится иметь дело оперативному персоналу на практике. К таким элементам относятся запирающий механизм, отключающее устройство и механизм свободного расцепления.

Запирающий механизм требуется для удержания выключателя во включенном положении. Для надежности запирающего механизма трущиеся поверхности ролика и защелки шлифуются; они должны регулярно смазываться незамерзающей смазкой и содержаться в чистоте.

Отключающее устройство состоит из электромагнита и ферромагнитного сердечника со штоком, перемещающегося внутри его обмотки. При подаче напряжения на обмотку электромагнита его сердечник втягивается и, ударяя по защелке, расцепляет запирающий механизм привода. Электромагнитные механизмы отключения должны обладать быстродействием и постоянством динамических характеристик независимо от колебаний напряжения сети и температуры окружающей среды. Для этого должно быть обеспечено свободное перемещение сердечника электромагнита на всем его пути, отрегулирован запас его хода, а также проверена надежная работа электромагнитного механизма отключения при отклонениях напряжения на его выводах от номинального.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×