позволили проверить разработанную математическую модель и показали хорошее соответствие теории и эксперимента.

Гидродинамика и динамика ракеты после отделения от носителя до пересечения поверхности воды изучались также на основе теории тонкого тела и экспериментально с помощью динамически подобных моделей. Для определения вихревой составляющей боковой силы в условиях нестационарного движения было проведено уникальное исследование по формированию сил, действующих на цилиндр в начало его поперечного движения из состояния покоя (М.Г. Щеглова, В.И. Огнев, Г.В. Maxoртых).

Это исследование привело к неожиданным результатам и способствовало существенному продвижению в понимании физики нестационарных гидродинамических процессов.

Опыт разработки первого поколения морских баллистических ракет (Р-11ФМ, Р-13, Р-21) показал, что использование лишь математических моделей для изучения процессов надводного и подводного старта с движущейся подводной лодки не может удовлетворять потребностям практики. По предложениям Г.В. Логвиновича, А.Б. Лотова и других ученых в филиале ЦАГИ создается целый комплекс уникальных установок и стендов для исследования процессов подводного старта. Работы велись конструкторским отделом филиала (А.В. Моденов, А.И. Болдин, Г.А. Майоров, Ю.П. Гребенникова и др.). В 1960 г. введен в эксплуатацию первый в стране баллистический бассейн с дон ной тележкой, имитирующей ход подводной лодки, пневматической пушкой для тел, входящих в воду, для проведения гидродинамических испытаний самоходных моделей. Подобную систему (конечно, с расширенными характеристиками) разработали в КБ Машиностроения в 1965 г.

В последующие годы создаются:

— вертикальный стенд с натурным давлением при старте;

— бак переменного давления, где проводились опыты с учетом не только числа Фруда, но и числа Эйлера, т. е. фактически создавались условия, когда давление в стенде при движении модели изменялось, подобно натуре, в несколько раз: от глубины старта до свободной поверхности или от свободной поверхности при входе в воду;

— горизонтальный стенд для отработки подводного стрелкового оружия (достигнуты скорости до 400 м/с) и ряд других установок и стендов.

В опытах на вертикальном стенде были получены значения давления в пусковой шахте, которые потом подтвердились на натурных пусках ракеты 4К10 (самой массовой подводной ракеты страны: под нее были построены в общей сложности 34 подводные лодки (16 пусковыми шахтами каждая).

За участие в разработке гидродинамики ракеты 4К10 правительственными наградами в 1968 г. были отмечены сотрудники филиала ЦАГИ В.Н. Архангельский, Г.В. Логвинович, Е.Н. Капанкин, А.В. Моденов, В.М. Ураков B.C. Демин.

Бак переменного давления.

Вертикальный стенд для отработки начального участка старта баллистических ракет с подводной лодки.

Экспериментальная установка на основе боевой торпеды для испытания газоструйной защиты ракет.

При создании ракеты 4К18 (на основе 4К10), предназначавшейся для атаки авианосных соединений вероятного противника, возникла проблема определения ударных нагрузок при ее входе в воду с большой дозвуковой скоростью. По предложению О.П. Шорыгина и Н.А. Шульмана на реактивном треке в Красноармейске была построена уникальная установка, на которой проводились исследования в условиях, близких к натурным, и выдавались рекомендации Заказчику.

Большие боковые силы и угловые отклонения, возникающие в процессе выхода ракет из шахты и при дальнейшем движении в воде, заставили искать способы снижения боковых гидродинамических сил. Были разработаны два близких по идеологии способа.

1. Образование каверны, охватывающей корпус ракеты.

2. Создание газоструйной завесы, также прикрывающей поверхность ракеты от поперечного потока воды.

Исследования по кавитационному старту проводились в связи с разработкой КБ «Арсенал» твердотопливной ракеты ЗМ17 (РСМ-45). Натурные испытания этого изделия подтвердили рекомендации ЦАГИ, и в 1980 г. РСМ-45 была принята в опытную эксплуатацию. Работы велись под руководством М. Г. Щегловой, Г.В. Махортых, А.А. Болдырева, В.И. Огнева.

Был реализован способ старта, разработанный совместно конструкторами КБ Машиностроения (г. Миасс) и специалистами по гидродинамике филиала ЦАГИ (Е.Н. Капанкин, Э.В. Куприянов, А.Л. Лисиченко, В. М. Шелопаев). В момент старта специальные заряды твердого топлива, расположенные на амортизационной ракетно-стартовой системе (АРСС), образовывали газоструйную защиту в виде каверны, которая существенно уменьшала воздействие лобового набегающего потока на ракету на ходу подводной лодки.

Способ газоструйной защиты исследовался как па самой ракете, так и в районе среза пусковой шахты (шахтная газоструйная защита па разных установках и масштабах моделей).

В отделении гидродинамики ЦАГИ проходили исследования старта межконтинентальных ракет подводного базирования всех последующих поколений (РСМ-40, РСМ-50, РСМ-52).

За разработку гидродинамики первой межконтинентальной ракеты 4К75 правительственными наградами были отмечены Е.Н. Капапкин, Э.В. Куприянов, А.В. Аверкин, В.Д. Середа. М.И. Вяткии, В.М. Шелонаев.

В последние годы выполнены обширные исследования по проблеме подводного старта вновь создаваемой твердотопливной ракеты «Булава». За этот цикл исследований О.П. Шорыгину в 2003 г. присуждена премия им. академика А.Д. Надирадзе.

Большая работа проведена в интересах создания низколетящих противокорабельных ракет подводного базирования различных классов. Отделение гидродинамики участвовало в разработке гидродинамики подводного старта таких изделий, как «Аметист», «Малахит» и «Гранит», стартующих из наклонных пусковых установок подводных лодок со сложенными крыльями и хвостовым оперением (М.Г. Щеглова, Г.В. Махортых, В.И. Огнев, В.П. Косачев). Изучение процесса раскрытия этих элементов в воде па моделях представляло собой сложную научно-техническую задачу, которая была успешно решена. Этот вид оружия является в настоящее время основой наступательной мощи отечественного флота.

Отделение гидродинамики также сыграло важную роль в создании различных вариантов противолодочного вооружения кораблей и подводных лодок. Гидродинамика подводного старта, входа в воду и дальнейшего движения в воде в режиме кавитации объектов этого класса была разработана па основе теоретических и экспериментальных исследований, а также многочисленных изобретений. Эти исследования в итоге привели к созданию таких объектов, как «Вихрь», «Вьюга», «Водопад», «Ветер», «Медведка» и многих других.

В 1963 г. за вклад в создание первых образцов противолодочного оружия были награждены В.Н. Архангельский, Г.В. Логвинович, М.Г. Щеглова, В.А. Соколов. Рекомендации но противолодочным и противокорабельным ракетам выдавались О.П. Шорыгиным, Н.А. Шульманом. Ю.Ф. Журавлевым, В.В. Стрекаловым, Г.Г. Кудрявцевой.

Успешно прошли работы по гидродинамике подводного стрелкового оружия, закончившиеся созданием автомата А П С и пистолета СПП -1. В настоящее время они продолжены в целях создания подводного стрелкового оружия нового поколения.

Процессы выхода тел из движущихся под водой объектов и из-под воды в атмосферу сопровождаются рядом специфических эффектов, причем иногда неожиданных. Так. оказалось, что при выходе тела из воды в момент разрушения тянущегося за ним водяного «кокона» возможно появление значительных поперечных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату