Естественно, после столь впечатляющих успехов ученых стартуют гонки от лабораторий до клиник: рынок обещает быть многомиллиардным. Уже в этом году в Центре биологии развития при институте Riken в Кобэ должны начаться первые в мире клинические испытания iPS. Масайо Такахаси , сотрудничающий с Яманакой, будет использовать их для лечения возрастной макулодистрофии, при которой гибнут клетки сетчатки и человек начинает слепнуть. Эта болезнь встречается примерно у 1% населения старше 50 лет. В первом исследовании примет участие шесть пациентов. У них возьмут с плеча кусочек кожи размером с перечное зерно, выделят оттуда фибробласты, репрограммируют их в iPS, затем с помощью специфических факторов превратят в клетки сетчатки глаза, после чего трансплантируют их в пораженную область глаза, чтобы заместить погибшие клетки. Этих исследований ждут во всем мире: они помогут определить, насколько безопасной и эффективной может быть такая методика, приживутся ли трансплантируемые клетки, не возникнет ли опухоли. Многочисленные доклинические испытания, по заверениям Такахаси, показали, что у мышей и приматов опухолей не появлялось.

Роберт Ланца из Advanced Cell Technology, комментируя это событие, высказался за осторожность. Он не представляет, что FDA позволила бы начать такие исследования без более массивной доказательной базы доклинических испытаний, чем у японцев. Ланца планирует в этом году начать клинические исследования полученных путем репрограммирования тромбоцитов, предназначенных для лечения расстройств свертываемости крови. Но сначала их будут вводить здоровым людям. Исследования Ланцы более безопасны: тромбоциты не имеют клеточного ядра, не могут делиться, соответственно, не могут стать причиной опухоли. Такахаси же объясняет, что он не случайно выбрал для начала глазное заболевание: ситуация в глазе легко контролируется и в случае чего проблема легко решается хирургическим путем. Если эти исследования будут успешными, следом могут стартовать уже наработанные методики для терапии различных заболеваний. Эта же технология исследуется в опытах по созданию не только здоровых клеток, но и различных тканей и даже органов.

Понятно, что японцы изо всех сил стремятся быть пионерами в области, в которой их соотечественник совершил форменный переворот. Правительство выделяет на стволовые клетки беспрецедентные инвестиции, в этом году — 21,4 млрд иен. Ожидается, что ближайшие десять лет будут объявлены японским правительством «десятилетием iPS» с бюджетом около 90 млрд иен.

Сейчас объем мирового рынка регенеративной медицины составляет примерно 3,6 млрд долларов, а к 2030 году, по прогнозам японского правительства, он достигнет более 180 млрд долларов. С введением новых регенеративных технологий затраты на лечение, по мнению японского министерства здравоохранения, могут сократиться на 60%, ведь с их помощью можно будет лечить очень многие болезни, в том числе пока не поддающиеся стандартной терапии.

Нужно тыкать в гены пальцами

Понимание роли генов в клетке и возможности манипулировать ими помогли созданию iPS. Эти же знания привели к идее лечения генами. Если болезнь связана с мутацией в каком-то гене, то совершенно естественно желание заменить его на здоровый. Идеи о возможности введения правильных или здоровых генов с целью лечения высказывались еще с 1970-х, после эпохального открытия ДНК. С тех пор ученые многому научились: они могут делать конструкции с нужным правильным геном и вирусной основой, которая будет «провозить» ген в ядро. Ученые используют свойство вируса проникать в ядро, где, собственно, и хранится ДНК. Но до клиники дело не доходило. Слишком много еще оставалось проблем. Во-первых, хотя вирус технологически лишался возможности размножаться в клетке, он все равно мог вызвать непредсказуемые реакции организма; во-вторых, конструкция могла встроиться в любое место генома и теоретически нарушить работу других генов. А могла вообще никуда не встроиться и не дать никакого эффекта. Шли многочисленные исследования, в основном на животных. В исключительных случаях разрешалось применение не очень проверенной генной терапии. Первый такой случай произошел в 1990 году. Уильям Андерсен впервые применил генную терапию для Ашанти де Сильва , девочки, которой не было и пяти лет. У нее была страшная, не совместимая с жизнью болезнь — врожденный иммунодефицит — вследствие дефекта в гене, кодирующем фермент аденозиндезаминазу (ADA). Дети с таким диагнозом не могут сопротивляться инфекциям, поэтому какое-то время они живут в своеобразном стерильном пузыре. Андерсен взял у Ашанти клетки костного мозга, внедрил в них здоровый ген ADA, нарастил эти клетки в культуре и ввел в организм девочки. Таких процедур ей делали несколько. Сейчас Ашанти около тридцати, она работает, у нее есть дети. Этот опыт чрезвычайно вдохновил и ученых, и врачей, и общественность. Правда, после пары случаев гибели пациентов, к которым была применена генная терапия (хотя и не было доказано, что виноваты генные методы), исследователей попросили не торопиться лечить людей.

Ученые думали, как можно осуществить встраивание нужного гена в геном. С некоторых пор стало известно, что в природе такие вставки происходят, например, при зачатии ребенка: смешиваясь, хромосомы мамы и папы могут обмениваться частями ДНК. Но как добиться такого направленного обмена во взрослом состоянии? Помогло открытие неких белков, которые назвали «цинковыми пальцами». «Кстати, одним из авторов этого открытия был наш соотечественник из биотехнологической компании Sangamo BioSciences Федор Урнов, — рассказывает Сергей Киселев. — Ученые показали, что “цинковые пальцы” могут легко прилипать к соответствующим участкам ДНК». Используя эти качества, исследователи синтезировали много конструкций с такими белками, которые могли не только швартоваться в определенных местах генома, но и вырезать, к примеру, испорченный ген, чтобы на его место мог встроиться специально запущенный в клетку здоровый ген. Правда, эту технологию быстро прикупила другая американская компания, которая продает такие белки за приличные деньги. Однако исследователи нашли выход. «Существуют похожие белки растительного происхождения, так называемые талены, — продолжает Киселев. — К тому же выяснилось, что их возможности гораздо шире, чем у “цинковых пальцев”, работать с ними легче, и они могут быть более эффективными. Поэтому конструкции с таленами позволяют проводить почти ювелирное редактирование генома в клетках». Кстати, журнал Science назвал эту технологию одним из десяти научных прорывов наряду с созданием iPS.

Параллельно велись поиски других методов, которые могли бы корректировать работу поломанных генов. К примеру, Мицуо Осимура

Вы читаете Эксперт № 12 (2013)
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату