Один вопрос понадобится вам, чтобы установить, кто из трех островитян заведомо не нормальный человек. Обращаясь к A, вы спрашиваете его: «Эквивалентно ли утверждение, что вы рыцарь, утверждению, что B — нормальный человек?» Предположим, что A отвечает утвердительно. Если A либо рыцарь, либо лжец, то (в силу фундаментального принципа) B должен быть нормальным человеком. Значит, C — не нормальный человек. Если же A не рыцарь и не лжец, то он должен быть нормальным человеком, и тогда C снова не может быть нормальным человеком. Таким образом, утвердительный ответ на ваш вопрос означает, что C — не нормальный человек.

Предположим, что A отвечает отрицательно. Если он рыцарь или лжец, то B — не нормальный человек (в силу фундаментального принципа). Если же A — не рыцарь и не лжец, то B, как и в предыдущем случае, не может быть нормальным человеком, так как A — нормальный человек. Таким образом, отрицательный ответ на ваш вопрос означает, что B — не нормальный человек.

Итак, получив от A утвердительный ответ, вы обращаетесь со вторым вопросом к C. Если же на ваш первый вопрос A отвечает отрицательно, то со вторым вопросом вам надлежит обратиться к B. И в том и в другом случае вы знаете, что обращаетесь со вторым вопросом либо к рыцарю, либо к лжецу. Вы спрашиваете (тот же вопрос был задан вами островитянину A в задаче 122): «Эквивалентно ли утверждение, что вы рыцарь, утверждению, что на этом острове зарыты сокровища?» Утвердительный ответ означает, что на острове есть сокровища, отрицательный — что их нет.

126. Не будь у вас «на вооружении» фундаментального принципа, решить эту задачу было бы довольно трудно. Но фундаментальный принцип позволяет без труда «расправиться» с задачей. Я предполагаю, что вам известны следующие свойства целых чисел: сумма двух четных чисел четна, сумма двух нечетных чисел также четна. Следовательно, вычитая четное число из четного числа или нечетное число из нечетного числа, вы получаете четноечисло. (Например, 12-8=4, 13-7=6.)

Из высказанного C утверждения (в силу фундаментального принципа) следует, то A и B однотипны, то есть они либо оба рыцари, либо оба лжецы. Следовательно, их высказывания либо оба истинны, либо оба ложны. Предположим, что оба высказывания истинны. Тогда по утверждению A на острове имеется четное число лжецов. По утверждению B на острове (вместе с вами) находится нечетное число людей. Но вы не рыцарь и не лжец, и, кроме вас, других гостей на острове нет. Поэтому, вычитая четное число лжецов из четного числа рыцарей и лжецов, вы получаете четное число рыцарей. Следовательно, в данном случае сокровища зарыты где-то на острове. Предположим теперь, что оба утверждения ложны. Это означает, что на острове находится нечетное число лжецов и нечетное число рыцарей и лжецов (так как всего на острове вместе с вами находится четное число людей). Следовательно, число рыцарей снова должно быть четным, и сокровище, как и в предыдущем случае, должно быть зарыто где-то на острове.

IX. Беллини или Челлини?

В гл. 5 мы рассказали о шкатулках Порции. История эта имеет продолжение. Напомним, что Беллини всегда гравировал на крышках шкатулок своей работы истинные надписи, а Челлини украшал шкатулки своей работы ложными высказываниями. У Беллини и Челлини были сыновья, которые переняли у отцов секреты мастерства и также стали делать изящные шкатулки. Сыновья пошли по стопам отцов: наследники Беллини гравировали на крышках своих шкатулок только истинные высказывания, а сыновья Челлини — только ложные.

Других мастеров по изготовлению шкатулок, кроме Беллини и Челлини, в Италии эпохи Возрождения не было: каждая шкатулка была работы либо Беллини, либо Челлини, либо сына Беллини, либо сына Челлини.

У знатоков и любителей старины шкатулки, изготовленные Беллини и Челлини (особенно отцами), ценятся необычайно высоко.

А. Чьей работы шкатулка?

127.

Однажды мне в руки попала шкатулка, на крышке которой выгравирована надпись:

Эта шкатулка не была сделана ни одним из сыновей Беллини

Чьей работы эта шкатулка: Беллини, Челлини или кого-нибудь из их сыновей?

128.

В другой раз мне довелось увидеть шкатулку, на крышке которой красовалась надпись, позволявшая заключить, что шкатулка была работы Челлини.

Какую надпись мог выгравировать знаменитый мастер на крышке шкатулки?

129.

Особенно высоко ценятся шкатулки с надписями, по которым можно установить, что шкатулки изготовлены Беллини или Челлини, но нельзя определить, кем именно. Однажды мне посчастливилось держать в руках такую шкатулку. Какая надпись могла украшать ее крышку?

130. От великого до смешного.

Предположим, что вам удалось найти шкатулку со следующей надписью на крышке:

Эту шкатулку сделал я

К какому заключению вы бы пришли на основании такой надписи?

131. Флорентийский патриций.

Один флорентийский патриций любил предаваться весьма изысканным и дорогостоящим забавам. Кульминацией званых вечеров была какая-нибудь игра, победителю которой вручался драгоценный приз. Прослышав про шкатулки Порции, патриций решил придумать очередную игру в том же духе. Он приказал изготовить три шкатулки — золотую, серебряную и свинцовую — и в одну из них положил драгоценный камень, который должен был стать наградой победителю. Своим гостям патриций объяснил, что каждая шкатулка изготовлена либо Беллини, либо Челлини (а не сыновьями знаменитых мастеров). Первого, кто догадается, в какой шкатулке спрятан драгоценный камень, и сможет доказать правильность своей догадки, ждет награда. Надписи на крышках шкатулок гласили:

На золотой На серебряной На свинцовой
Если драгоценный камень лежит в серебряной шкатулке, то ее изготовил Беллини Если драгоценный камень лежит в этой шкатулке, то золотую шкатулку изготовил Челлини Шкатулку, в которой лежит драгоценный камень, изготовил Челлини

В какую шкатулку патриций положил драгоценный камень?

Б. Пары шкатулок

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату