Метод оценивания надежности, основанный на расщеплении результатов по тесту на две части (split- half method), наиболее распространен из-за своего удобства. Он позволяет вычислить коэффициент надежности при однократном выполнении испытуемыми теста. Для оценки надежности результаты тестирования делят на две части: в одну включают данные студентов по четным, а в другую – по нечетным заданиям, считая при этом, что получены сходные по содержанию части теста. Правда, деление на две части не единственный способ, возможны и другие варианты, когда выделяют большее число частей при оценке надежности теста.
Для оценивания надежности методом расщепления результаты студентов заносят в табл. 6.11.
Таблица 6.11
Далее для таблицы данных используют формулу (6.9), в которой роль результатов в первом тестировании выполняют данные по четным заданиям, а во втором – по нечетным.
Пример подсчета по данным исходной матрицы приведен в табл. 6.2. Результаты испытуемых по четным и нечетным заданиям приводятся в табл. 6.12.
После подстановки чисел из табл. 6.12 в формулу (6.9) получается
По сравнению с прежним значением 0,78 надежность получилась намного меньше, что можно было предвидеть, поскольку тест укоротился в два раза (после расщепления подсчет надежности был по пяти заданиям вместо десяти).
Таблица 6.12
Для коррекции оценки надежности в соответствии с длиной исходного теста используется формула Спирмена–Брауна
где в числителе и знаменателе дроби стоит коэффициент надежности для половины заданий теста, а слева скорректированный коэффициент надежности с учетом всех заданий теста.
Тогда для рассматриваемого примера коэффициент надежности теста из десяти заданий будет
После коррекции коэффициент надежности получился приблизительно такой же, как и в предыдущем случае подсчета ретестовым методом (
Приведенный метод оценивания надежности имеет свои ограничения в применении. Он основан на допущении параллельности двух половин теста, что не всегда и не в полной мере может оказаться верным. Корреляция двух половин возрастает по мере роста гомогенности теста. В этой связи метод расщепления нередко называют методом оценки внутренней состоятельности (согласованности) теста (Internal- Consistency Method).
6.4. Метод Кьюдера-Ричардсона для дихотомических оценок
Метод Кьюдера-Ричардсона для оценки надежности также основан на однократном тестировании, но в отличие от предыдущего подхода не зависит от искусственных допущений о полной параллельности двух частей теста. Однако и он имеет свою ограниченную сферу применения, поскольку годится исключительно при использовании дихотомических оценок по результатам выполнения заданий гомогенных тестов.
Формула Кьюдера-Ричардсона (F. Kuder, M. Richardson-20, или KR-20) имеет вид [28, 36]
(6.10)
где
Для исходной матрицы данных подсчитанная ранее исправленная дисперсия
При оценке надежности нельзя полагаться лишь на один показатель, поскольку каждый из них имеет свои ограничения, смещающие оценки надежности теста в сторону завышения или занижения. Для достоверной проверки качества теста следует учитывать несколько показателей надежности, подсчитанных по разным формулам, лишь небольшая часть которых приведена в данном тексте. В качестве нижнего предела допустимых значений надежности обычно выбирают 0,7. При более низком значении использование теста вряд ли целесообразно в силу большой погрешности измерения.
Если тест разрабатывают профессионалы, то к нему предъявляют более жесткие требования. Как правило, тесты с надежностью менее 0,8 считаются непригодными в профессионально организованных службах и центрах тестирования. Значения коэффициента надежности, превышающие 0,9, говорят о высоком качестве теста. Они крайне желательны, но редко встречаются. Обычно в тестологической практике надежность тестов колеблется в интервале (0,8; 0,9). Коэффициент надежности, подсчитываемый по матрице тестовых результатов, всегда зависит от свойств выборки испытуемых. Поэтому при каждом очередном использовании теста приходится оценивать его надежность, а уж потом говорить о возможности интерпретации результатов выполнения теста.
6.5. Надежность и стандартная ошибка измерения
Один из аспектов применения коэффициента надежности связан с определением стандартной ошибки измерения. Для установления связи между стандартной ошибкой измерения и надежностью теста необходимо преобразовать формулу
и выделить в левой части
где
Для лучшего уяснения смысла показателя