250 000 000 000 000 киловатт-часов. Столько энергии вырабатывается на всем земном шаре за много лет.
Однако мы вычислили лишь энергию ракеты в полете. Нами не учтено, что предварительно требуется еще разогнать наш летательный аппарат до скорости 260 000 километров в секунду! А по окончании путешествия ракету придется затормозить, чтобы можно было безопасно приземлиться. Сколько на это пойдет энергии?
Даже если бы в нашем распоряжении было топливо, дающее струю, которая вытекает из реактивного двигателя с самой большой из возможных скоростей — со скоростью света, то и тогда эта энергия должна была бы в 200 раз превышать количество, подсчитанное выше. То есть нам пришлось бы израсходовать столько энергии, сколько производит человечество за несколько десятилетий. Действительная же скорость выброса струи из двигателей ракеты в десятки тысяч раз меньше скорости света. И это делает потребные затраты энергии на предпринятый нами мысленно полет невероятно большими.
Предметы сокращаются
Итак, время, как мы только что убедились, сброшено со своего пьедестала абсолютного понятия, оно имеет относительный смысл, требующий точного указания тех лабораторий, в которых ведется измерение.
Обратимся теперь к пространству. Еще до описания опыта Майкельсона нами было выяснено, что пространство относительно. Несмотря на эту относительность пространства, мы все же приписывали размерам тел абсолютный характер, то есть считали, что они являются свойствами этого тела и не зависят от того, в какой лаборатории мы ведем наблюдение. Однако теория относительности заставляет нас распрощаться и с этим убеждением. Оно, как и представление об абсолютном времени, лишь предрассудок, возникший вследствие того, что мы всегда имеем дело со скоростями, ничтожно малыми по сравнению со скоростью света.
Представим себе, что поезд Эйнштейна проносится мимо станционной платформы, имеющей длину 2 400 000 километров.
Согласятся ли с этим утверждением пассажиры в поезде Эйнштейна? От одного конца платформы до другого поезд пройдет, по показаниям станционных часов, за 2 400 000 / 240 000 = 10 секунд. Но у пассажиров есть свои часы, и по ним движение поезда от одного конца платформы до другого займет меньше времени. Как мы уже знаем, оно будет равно всего б секундам. Из этого пассажиры с полным правом заключат, что длина платформы вовсе не 2 400 000 километров, а 240 000 X 6 = 1 440 000 километров.
Мы видим, что длина платформы, с точки зрения покоящейся относительно нее лаборатории, больше, чем с точки зрения лаборатории, относительно которой эта платформа движется. Всякое движущееся тело сокращается в направлении своего движения.
Однако это сокращение отнюдь не является признаком абсолютности движения: стоит нам поместиться в лаборатории, покоящейся относительно тела, как оно вновь удлинится. Совершенно так же пассажиры найдут, что платформа сократилась, а стоящим на ней людям покажется, что сократился поезд Эйнштейна (в отношении 6:10).
И это будет не обман зрения. То же самое покажут любые приборы, которыми можно воспользоваться, чтобы измерить длину тел.
В связи с обнаруженным сокращением предметов мы должны теперь ввести поправку в наши рассуждения на стр. 39 о времени открывания дверей в поезде Эйнштейна. Именно когда мы вычисляли момент открывания дверей, с точки зрения наблюдателей на станционной платформе, мы считали, что длина движущегося поезда будет такой же, как и покоящегося. Между тем для людей на платформе длина поезда сократилась. Соответственно этому промежуток времени между открыванием дверей, с точки зрения станционных часов, будет в действительности равен не 40 секундам, а всего (6 / 10) X 40 = 24 секундам.
Рисунки, которые помещены на стр. 61, изображают поезд Эйнштейна и станционную платформу, как они представляются наблюдателям на станции и в поезде. Мы видим, что на правом рисунке платформа длиннее поезда, а на левом — поезд длиннее платформы.
Какая из этих картин соответствует действительности?
Вопрос так же лишен смысла, как и вопрос о пастухе и корове на стр. 7.
И то и другое — картины одной и той же объективной действительности, «сфотографированные» с различных точек зрения.
Скорости капризничают
Какую скорость имеет пассажир относительно полотна железной дороги, если он идет к голове поезда со скоростью 5 километров в час, а поезд движется со скоростью 50 километров в час? Ясно, что скорость человека относительно полотна дороги равна 50 + 5 = 55 километрам в час. Рассуждение, которым мы при этом пользуемся, основывается на законе сложения скоростей, и в правильности этого закона у нас не возникает сомнений. В самом деле, за час поезд пройдет 50 километров, а человек в поезде — еще 5 километров. Итого 55 километров, о которых мы говорили.
Вполне понятно, что существование в мире предельной скорости лишает закон сложения скоростей его универсальной применимости к большим и малым скоростям. Ведь если пассажир движется в поезде Эйнштейна со скоростью, скажем, 100 000 километров в секунду, то скорость его относительно полотна железной дороги не может быть равной 240 000 + 100 000 = 340 000 километров в секунду, потому что эта скорость превосходит предельную скорость света и, следовательно, не может существовать в природе.
Таким образом, закон сложения скоростей, которым мы пользуемся в повседневной жизни, оказывается неточным. Он справедлив лишь для скоростей, достаточно малых по сравнению со скоростью света.
Читатель, привыкший уже ко всяким парадоксам теории относительности, легко поймет причины неприменимости, казалось бы очевидного, рассуждения, при помощи которого мы только что вывели закон сложения скоростей. Ведь для этого мы сложили расстояние, пройденное в один час поездом по полотну и пассажиром в поезде. Но теория относительности показывает нам, что эти расстояния складывать нельзя. Это было бы так же нелепо, как если бы для того, чтобы определить площадь поля, изображенного на этой странице, мы перемножили бы длины отрезков АВ и ВС, забыв, что последний, вследствие перспективы, на рисунке искажен. Кроме того, для определения скорости пассажира по отношению к станции мы должны определить путь, пройденный им за час по станционному времени, в то время как для установления скорости пассажира в поезде мы пользовались поездным временем, что, как нам уже известно, совсем не одно и то же.
Все это приводит к тому, что скорости, из которых по крайней мере одна сравнима со скоростью света, складываются совсем иначе, чем мы привыкли. Это парадоксальное сложение скоростей можно видеть на опыте, когда мы наблюдаем, например, за распространением света в движущейся воде (о чем говорилось выше). То обстоятельство, что скорость распространения света в движущейся воде не равна сумме скорости света в покоящейся воде и скорости движения воды, а меньше этой суммы, является прямым следствием теории относительности.
Особенно своеобразно складываются скорости в том случае, когда одна из них точно равна 300 000 километров в секунду. Эта скорость, как мы знаем, обладает свойством оставаться неизменной, как бы ни