двоичным деревом. Элементы множества хранятся в виде вершин дерева. Пустые поддеревья на рис. 9.4 не показаны. Например, вершина b имеет два поддерева, которые оба пусты.

Существует много способов представления двоичных деревьев на Прологе. Одна из простых возможностей - сделать корень главным функтором соответствующего терма, а поддеревья - его аргументами. Тогда дерево рис. 9.4 примет вид

        а( b, с( d) )

Такое представление имеет среди прочих своих недостатков то слабое место, что для каждой вершины дерева нужен свой функтор. Это может привести к неприятностям, если вершины сами являются структурными объектами.

Рис. 9. 4.  Двоичное дерево.

Существует более эффективный и более привычный способ представления двоичных деревьев: нам нужен специальный символ для обозначения пустого дерева и функтор для построения непустого дерева из трех компонент ( корня и двух поддеревьев). Относительно функтора и специального символа сделаем следующий выбор:

Пусть атом nil представляет пустое дерево.

В качестве функтора примем дер, так что дерево с корнем X, левым поддеревом L и правым поддеревом R будет иметь вид терма дер( L, X, R) (см. рис. 9.5).

В этом представлении дерево рис. 9.4 выглядит как

        дер( дер( nil, b, nil), a,

                    дер( дер( nil, d, nil), с, nil) ).

Теперь рассмотрим отношение принадлежности, которое будем обозначать внутри. Цель

        внутри( X, Т)

истинна, если Х есть вершина дерева Т. Отношение внутри можно определить при помощи следующих правил:

Х есть вершина дерева Т, если

корень дерева Т совпадает с X, или

Х - это вершина из левого поддерева, или

Х - это вершина из правого поддерева.

Рис. 9. 5.  Представление двоичных деревьев.

Эти правила непосредственно транслируются на Пролог следующим образом:

        внутри( X, дер( -, X, -) ).

        внутри( X, дер( L, -, -) ) :-

                внутри( X, L).

        внутри( X, дер( -, -, R) ) :-

                внутри( X, R).

Очевидно, что цель

        внутри( X, nil)

терпит неудачу при любом X.

Посмотрим, как ведет себя наша процедура. Рассмотрим рис. 9.4. Цель

        внутри( X, Т)

используя механизм возвратов, находит все элементы данных, содержащиеся в множестве, причем обнаруживает их в следующем порядке:

        Х = а; Х = b; Х = с; X = d

Вы читаете Prolog
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату