Nilsson N. J. (1980). Principles of Artificial Intelligence. Tioga; also Springer- Verlag, 1981.

Winston P. H. (1984). Artificial Intelligence (second edition). Addison-Wesley. [Имеется перевод первого издания: Уинстон П. Искусственный интеллект. - М.: Мир, 1980.]

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

Глава 12

ПОИСК С ПРЕДПОЧТЕНИЕМ: ЭВРИСТИЧЕСКИЙ ПОИСК

Поиск в графах при решении задач, как правило, невозможен без решения проблемы комбинаторной сложности, возникающей из-за быстрого роста числа альтернатив. Эффективным средством борьбы с этим служит эвристический поиск.

Один из путей использования эвристической информации о задаче - это получение численных эвристических оценок для вершин пространства состояний. Оценка вершины указывает нам, насколько данная вершина перспективна с точки зрения достижения цели. Идея состоит в том, чтобы всегда продолжать поиск, начиная с наиболее перспективной вершины, выбранной из всего множества кандидатов. Именно на этом принципе основана программа поиска с предпочтением, описанная в данной главе.

12. 1.    Поиск с предпочтением

Программу поиска с предпочтением можно получить как результат усовершенствования программы поиска в ширину (рис. 11.13). Подобно поиску в ширину, поиск с предпочтением начинается со стартовой вершины и использует множество путей-кандидатов. В то время, как поиск в ширину всегда выбирает для продолжения самый короткий путь (т.е. переходит в вершины наименьшей глубины), поиск с предпочтением вносит в этот принцип следующее усовершенствование: для каждого кандидата вычисляется оценка и для продолжения выбирается кандидат с наилучшей оценкой.

Рис. 12. 1.  Построение эвристической оценки f(n)  стоимости

самого дешевого пути из  s  в  t,   проходящего через  nf(n) = g(n) + h(n).

Мы будем в дальнейшем предполагать, что для дуг пространства состояний определена функция стоимости с(n, n')  - стоимость перехода из вершины n  к вершине-преемнику n'.

Пусть f  - это эвристическая оценочная функция, при помощи которой мы получаем для каждой вершины n  оценку f( n)   'трудности' этой вершины. Тогда наиболее перспективной вершиной-кандидатом следует считать вершину, для которой  f   принимает минимальное значение. Мы будем использовать здесь функцию  f   специального вида, приводящую к хорошо известному А*-алгоритму. Функция  f( n)   будет построена таким образом, чтобы давать оценку стоимости оптимального решающего пути из стартовой вершины  s  к одной из целевых вершин при условии, что этот путь проходит через вершину  n.  Давайте предположим, что такой путь существует и что  t  -  это целевая вершина, для которой этот путь минимален. Тогда оценку  f( n) можно представить в виде суммы из двух слагаемых (рис. 12.1):

        f( n) = g( n) + h( n)

Здесь  g( n)  - оценка оптимального пути из  s  в  nh( n) -  оценка оптимального пути из  n  в  t.

Когда в процессе поиска мы попадаем в вершину   n,  мы оказываемся в следующей ситуация: путь из  s  в  n  уже найден, и его стоимость может быть вычислена как сумма стоимостей составляющих его дуг. Этот путь не обязательно оптимален (возможно, существует более дешевый, еще не найденный путь из  s   в  n),  однако стоимость этого пути можно использовать в качестве оценки  g(n)   минимальной стоимости пути из  s  в

Вы читаете Prolog
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату