Состав системы: шасси, колесо самолета. Надсистема — воздух, бетонное покрытие.
Конфликтующая пара: колесо самолета и бетонное покрытие.
Анализ явления. Посадочная скорость самолета большая. В момент касания бетонного покрытия колесо неподвижно. Из-за большого момента инерции оно не может мгновенно раскрутиться и какое-то время скользит. В этот момент происходит значительное истирание покрышки.
Износа покрышки не будет, если нижняя точка колеса будет иметь такую же скорость, что и самолет.
Следовательно, нужно устройство для раскручивания колеса, но такое, которое бы не усложняло систему, чтобы его масса, габариты и энергоемкость стремились к нулю.
Например, ставить на каждое колесо двигатель для его раскручивания недопустимо — это значительно усложняет конструкцию, увеличивает вес конструкции.
ТП: Если на шасси установить специальное устройство для раскручивания колеса, то это усложнит систему, но устранит нежелательное явление — износ покрышки.
ФП: Устройство для раскручивания колеса должно быть. И его быть не должно, чтобы не усложнять систему и не увеличивать ее массу.
ОЗ — колесо, покрытие взлетно-посадочной полосы (ВПП), ОВ — момент касания ВПП и время, когда самолет идет на посадку.
Следуя принципу идеальности, нужно при минимальных усложнениях в системе обеспечить требуемое свойство.
Значит, нужно попытаться использовать имеющиеся ресурсы в рассматриваемой ТС или НС.
Во-первых, найти энергию, и, во-вторых, найти способ ее использования для преобразования в механическое движение — вращение колеса.
Здесь целесообразно сформулировать ИКР.
ИКР: Колесо само раскручивается до встречи с бетонным покрытием.
Самолет идет на посадку с большой скоростью, торможение происходит за счет аэродинамических сил. Таким образом, имеется бесплатная энергия — скоростной напор воздушной среды (рис. 7.5, а). Как его можно использовать для раскручивания колеса?
Если свободно подвешенное на оси колесо находится в воздушном потоке, то из-за симметричности обтекания оно вращаться не будет.
Получаем ФП: Колесо должно вращаться, чтобы в момент касания оно не скользило по бетону, и оно не будет вращаться, так как нет условий для возникновения крутящего момента.
Значит, нужно создать крутящий момент. Из приведенной схемы видно, что при симметричном обтекании момента не возникает. Следовательно, нужно сделать так, чтобы сумма аэродинамических сил, действующая на нижнюю часть колеса, была больше, чем на верхнюю часть.
Выберем изменяемый элемент. Очевидно, что он должен быть на самолете. Это может быть либо элемент рассматриваемой системы, то есть колесо, либо ближайшей надсистемы, в которую входит колесо, то есть шасси.
Возможные решения
Ввести еще один компонент в систему.
На стойку шасси закрепить крыло, которое сделает несимметричным обтекание колеса воздушным потоком (см. рис. 7.5, б).
Изменить форму имеющегося компонента.
Для согласования скоростей вращения колес и скорости полета самолета французский изобретатель Х. Оливье предложил раскручивать колеса в полете. Для этого на боковой поверхности колес установить лопатки, которые позволяют раскрутить колеса под действием набегающего воздушного потока (рис. 7.5, в).
Можно привлечь аналогию — вертушка анемометра, прибора для измерения скорости ветра.
Задача 7.7. На кораблях, особенно военных, каждый квадратный метр площади на счету. Особенно важно, чтобы любые сооружения занимали как можно меньше места. Но весьма трудно сократить вылет трапа, потому что он зависит от высоты и глубины ступенек. Сделать каждую ступеньку выше (тогда их потребуется меньше) нельзя — затрудняется хождение. А сделать каждую ступеньку уже тоже нельзя, так как на ней должна уместиться ступня.
Как сократить вылет трапа L (рис. 7.6, а)?
Рассматриваемая система — трап состоит из однородных компонентов — ступенек, которые характеризуются двумя важными для поставленной проблемы параметрами: высотой h и шириной b ступеньки.
ТП: Если ступеньки стандартной ширины b и высоты h, то удобно ходить, но при этом трап занимает много места, имеет большой вылет L.
Из этого ТП можно сформулировать два физических противоречия.
ФП-1: Ступенька должна быть высокой, чтобы сократить вылет трапа, и она не должна быть высокой, чтобы удобно было ходить.
ФП-2: Ширина ступеньки должна быть маленькой, чтобы сократить вылет трапа, и она должна быть большой, чтобы удобно было ходить.
Противоречия в задаче обусловлены двумя требованиями, с одной стороны, минимальный вылет трапа (размерная характеристика) и, с другой стороны, удобством хождения, то есть антропологическим фактором.
Первое требование ориентирует на поиск решения путем пространственных преобразований или применения принципа динамизации (аналогия — складывающаяся стремянка).
Второе — на анализ потребительных свойств этого устройства при использовании его по прямому назначению человеком, то есть выявление тех свойств трапа, которые были бы достаточны для удобного спуска и подъема.
Здесь целесообразно обратиться к функциональному анализу ступенек — дать оценку уровня выполнения ими своих функций, например, по трехбалльной шкале: адекватно, недостаточно или избыточно.
Если создаваемая лестница не предназначена для организации встречного движения пешеходов, то каждая ступенька поднимающимся или спускающимся человеком используется не в полной мере. Действительно, ведь человек ставит ногу только на одну ступеньку, если он не решил по дороге отдохнуть или не затеял на лестнице разговор.
Таким образом, длина ступеньки избыточна по выполняемой функции, для перемещения по лестнице. И ее можно сократить, например, вдвое.
Таким образом, мы получили ресурс для решения задачи. Возникает вопрос: можно ли эту избыточность использовать для решения поставленной проблемы?
Избыточная длина «подсказывает» использовать пространственный ресурс.
Если длина ступеньки уменьшилась, то на ее место можно поставить следующую ступеньку.
Таким образом, ступеньки можно расположить в шахматном порядке. Вылет трапа уменьшится вдвое при сохранении удобства перемещения (см. рис. 7.6, б)
8. Приемы устранения технических противоречий