№ 30. Сопло гидромонитора надо чем?то защищать от абразивного воздействия песка. Это можно сделать, пуская вдоль поверхности сопла тонкую пленку чистой (без песка) воды.
А.с. № 569388. Способ очистки отливок, включающий подачу на очищаемую поверхность струи воды под высоким давлением, отличающийся тем, что с целью уменьшения износа сопел гидромонитора перед подачей струи отливки помещают в ванну с водой и песком.
То есть предлагается подавать монитором чистую воду, но сделать так, чтобы струя воды из монитора подхватывала песок и направляла его на отливку.
Задача 9.6. При спуске судна на воду с продольного стапеля возникает необходимость поддержания в незатопленном положении быстро входящей в воду кормовой части судна. Применяемые для этой цели поддерживающие поплавки неудобны, поскольку очень громоздки, а кроме того, они после выхода судна в воду нежелательно поднимают корму. Необходимо разработать простое устройство для поддержания кормовой оконечности судна при спуске на воду.
ТП: Используя поплавки, можно гарантировать поддержание кормы судна на плаву при наклонном входе в воду, но при этом после спуска корма будет задрана.
Составим таблицу возможных пар улучшений-ухудшений.
Можно представить себе и иной вариант таблицы. В нем улучшаемые характеристики более «физичны», в большей степени раскрывают то, что требуется по условиям.
В качестве возможного варианта решения рассмотрим идею группы ленинградских корабелов. Они предложили заменить громоздкий поплавок на подводное крыло. При входе судна в воду крыло обеспечивает создание подъемной силы. Но как только корабль полностью сошел со стапеля в воду и остановился, подъемная сила исчезает а.с. № 281197).
Задача 9.7. Для вновь создаваемого морского порта необходимо разработать систему фиксации плавучих объектов (баржи, плавучие контейнеры, лихтеры) в заранее заданных точках акватории. Сложность в том, что запрещено использовать механическую фиксацию объектов. Параметры объектов варьируются в широких пределах: объем от сотен кубометров до десятков тысяч, осадка от полуметра до восьми метров. Необходимо дать предложения по организации такой системы.
Применяя механические фиксаторы, можно удерживать объекты в заданных точках акватории, но они часто повреждаются.
Существуют различные предложения по реализации необходимого требования. К числу наиболее интересных можно отнести: создать под объектом воронки, гребни воды по периметру объекта (фонтаны), уменьшить плотность воды под объектом (например, подавая пресную воду или газируя ее), помещая объект в своего рода потенциальную яму, то есть увеличивая осадку судна, а следовательно, создавая необходимость работы по выходу из области его фиксации.
Задача 9.8. Вибрационные машины широко применяются в тех областях, где требуются уплотнение, сепарация, транспортировка. Чаще всего основой привода таких машин является дебалансный вибровозбудитель (неуравновешенный груз? дебаланс, жестко насаженный на вращающийся вал). Однако такие конструкции при запуске потребляют большую мощность, чем в установившемся режиме работы. Значит, мощность приводного электродвигателя приходится завышать (в установившемся режиме он работает с недогрузкой). Кроме того, при пуске и останове машина проходит через резонансную зону, при этом резко увеличиваются амплитуда колебаний и динамические нагрузки на несущие конструкции. Конструкцию приходится рассчитывать с большим запасом прочности. Необходимо найти идею дебалансной машины, лишенную перечисленных недостатков.
ТП: Увеличивая дисбаланс на валу вибрационной машины, можно повышать производительность, но при этом ухудшаются ее весовые и энергетические характеристики.
Изобретатели дебаланс посадили на вал свободно, а посадочную шейку выполнили с небольшим эксцентриситетом относительно вала. Электродвигатель запускается практически вхолостую, но по достижении определенной скорости вращения центробежная сила «захватывает» дебаланс, и в дальнейшем он с валом вращается как единое целое. Предлагается также выполнить дебаланс составным, а каждую часть посадить со своим эксцентриситетом. Тогда по мере возрастания оборотов составные дебалансы будут «захватываться» поочередно и запуск вибровозбудителя будет еще более плавным.
12. АРИЗ Ранние алгоритмы
(разбор примеров)
АРИЗ — один из основных инструментов теории решения изобретательских задач. С 1961 г. он прошел большой путь развития, превратился из простого и короткого списка инструкций в развернутый, детализированный метод (АРИЗ-85В), включающий в себя многие десятки подробно регламентированных «ступенек» — шагов. Однако, несмотря на постоянно вводимые автором и разработчиком метода Г. С. Альтшуллером изменения, все варианты АРИЗов сохранили общую структуру, работают на основе общих принципов.
Практическое освоение АРИЗа нами также будет вестись с использованием вариантов алгоритма все возрастающей сложности. Начальная цель — ознакомление с общими принципами организации АРИЗ, его устройством. Ранее уже была продемонстрирована работа с АРИЗ-61 и АРИЗ-71. Настало время углубленно отработать практическое использование второй и третьей стадий (основных «решающих» модулей) АРИЗ- 71.
Известно, что летящий к земле предмет находится в состоянии невесомости. Это так называемая «невесомость падения». Ее можно определить как отсутствие реакции опоры. Чем дольше длится свободное падение, тем дольше предмет находится в состоянии невесомости. Этим воспользовались инженеры и в середине прошлого века создали стенды для проведения научных экспериментов и отработки некоторых перспективных космических технологий. Такие стенды существовали еще в семидесятые годы в США, в Центре космических исследований имени Д. Маршалла (сброс с башни) и в центре Льюиса (шахта глубиной 170 м). Приборы помещались в специальные контейнеры, снабженные амортизирующими системами, предназначенными для защиты от удара при приземлении.
При проведении экспериментов оказалось, что существенное влияние на контейнер с приборами оказывается воздухом. При сбрасывании с башни на контейнер действует еще и ветер. В шахте ветра нет, но торможение за счет трения о воздух приводит к появлению внутри контейнера небольшой весомости, достигающей сотых долей нормального ускорения свободного падения. Это недопустимо для целого ряда экспериментов. Как быть?
В связи с отсутствием возможности проводить патентные исследования коротко рассмотрим историю решения этой задачи.
Наиболее массовыми являются варианты решений, связанные с компенсацией возникающего воздушного сопротивления. Это предлагалось делать с помощью ракетных двигателей, пропеллерных систем, тянущих систем (например, приводимых в движение электромоторами канатов, протянутых по всей длине шахты с закрепленным на них контейнером). Предлагаемые средства должны компенсировать сопротивление воздуха (ракетные или пропеллерные системы) или самостоятельно обеспечивать движение падающего контейнера с требуемым ускорением (канаты). Но все эти варианты значительно усложняют систему. Например, применение ракетных двигателей потребует обеспечения высокой точности регулирования тяги.
Сложности возникнут и при эксплуатации шахты, в которой перед сбросом контейнера предлагается откачивать воздух. В такой шахте придется создавать герметичную оболочку по всей боковой поверхности (для предотвращения подсоса воздуха из земных пород), использовать вакуумные насосы большой