вспомогательные, которые обеспечивают выполнение основной функции, способствуют сохранению жизнеспособности самой системы.

Внутренняя форма организации системы определяет её структуру. Структура — это совокупность элементов и связей между ними, предполагающая их единство и определенную пространственно — временную устойчивость. И то и другое определяется физическими принципами, использованными при осуществлении требуемой полезной функции. Устойчивость предполагает свойство саморегуляции, реализуемой подсистемой управления.

Функции системы и ее структура должны находиться в единстве, взаимосвязи, то есть функция и структура должны соответствовать друг другу. Однако, это единство носит относительный, временный, преходящий характер. В процессе развития системы может происходить рассогласование её структуры и выполняемых функций, что приводит к конфликту. Чаще всего разрешение возникающих противоречий реализуется путем изменения существовавшей структуры вплоть до отказа от её дальнейшего использования.

Набор функций, которые способна выполнять система, со временем может меняться, что скажется на числе элементов, в неё входящих, на распределении функций между отдельными подсистемами. В итоге это приводит к изменению пространственно — временной структуры системы.

Важнейшим свойством любой технической системы является то, что изменение одной из её частей отражается на состоянии других частей и всей системы в целом. И наоборот, изменение системы в целом сказывается на состоянии ее частей. В разных случаях эти взаимосвязи проявляются с разной силой.

Наиболее типичная форма организации систем — иерархическая. По преимуществу иерархия — структура жесткая, с глубокими и прочными связями. И чем ниже по иерархической лестнице, тем жестче становятся связи системы с подсистемами. Это означает, что адекватное задание целей конкретной создаваемой (или совершенствуемой) системы требует предварительного определения целей более широкой системы, в которую она входит в качестве подсистемы. Подобный подход ориентирует поиски решения проблемы не только на уровне самой системы, но и на более высоком иерархическом уровне, — уровне надсистем.

Так, например, повышение долговечности конструкций железнодорожного пути может быть реализовано не только за счет повышения прочностных свойств самих элементов пути (рельсов, шпал, скреплений, балласта), но и за счет совершенствования надсистемы — системы ведения путевого хозяйства (качества ремонтов пути, его текущего содержания), или улучшений в смежной системе — подвижном составе (снижения статических и динамических нагрузок, улучшении состояния ходовых частей подвижного состава). Осознание этого факта привело в свое время к созданию во Всероссийском научно- исследовательском институте железнодорожного транспорта целого отделения комплексных испытаний подвижного состава и пути.

В общей совокупности подходов к изучению различных по уровню сложности систем можно выделить два фундаментальных.

Во-первых, при изучении системы необходимо представить себе, как происходило её развитие во времени. Это позволяет понять, что вызвало необходимость рождения технической системы, как происходило (или происходит) её развитие, что ждёт эту систему в будущем, когда и при каких условиях наступит её старение, «смерть»… Такой подход, который часто называют «генетическим», весьма продуктивен, поскольку даёт возможность не только оценить эффективность рассматриваемой системы, но и дать рекомендации о целесообразности своевременного перехода от этой системы к новой, сменяющей её в рамках непрерывного процесса эволюции.

Во-вторых, рассматривая систему, необходимо отчётливо представлять её пространственные связи. Как мы уже говорили, каждая система характеризуется значительным числом уровней (подсистема — система — надсистема), связей с другими системами. Любое изменение на одном из этих уровней так или иначе затронет и рассматриваемую систему, причем далеко не все следствия таких изменений могут носить положительный характер. Это означает, что чем больше связей внутри и вне системы мы увидим, тем большим набором возможностей для её совершенствования мы будем обладать.

Подведем некоторый итог относительно того, какими же основными признаками должна обладать совокупность отдельных элементов с тем, чтобы её можно было считать системой?

Таких признака четыре, это:

функциональность (любая система должна выполнять некоторую полезную функцию);

целостность (система — это не простая совокупность отдельных элементов, а ещё и результат их взаимодействия, получить который трудно, а порой и невозможно, если какой-либо из этих элементов удалить);

организация (имеет место иерархия систем различного уровня, причём отдельные элементы должны быть взаимосвязаны не только в пространстве, но и во времени);

системное качество (система обладает качеством, не сводящимся к качествам её отдельных элементов).

1.4 Что такое «Теория решения изобретательских задач» (ТРИЗ)

Создана ТРИЗ нашим соотечественником, инженером, изобретателем, известным писателем- фантастом Генрихом Сауловичем Альтшуллером (1926–1998 г.г.). Работу над ее созданием со своим другом Р. Б. Шапиро он начал в 1946 году, будучи молодым сотрудником патентного бюро. В 1956 г. появилась первая их публикация в научном журнале (Вопросы психологии, № 6, 1956), в которой были сформулированы основные положения новой теории.

Они провозгласили новые по тем временам положения, что техника развивается не случайным образом, а в соответствии со своими внутренними законами, что эти законы можно выявить и на их основе сознательно совершенствовать технические системы. И, наконец, решение любой изобретательской задачи — это результат преодоления противоречия.

Кстати, можно утверждать, что и сама ТРИЗ родилась как результат разрешения противоречия между необходимостью помочь изобретателям, обращавшимся за консультациями к будущему автору ТРИЗ в части решения своих изобретательских задач, и отсутствием необходимых методических средств «делания» изобретений.

Какой же был использован инструмент, позволивший, в конце концов, выявить в дальнейшем закономерности развития технических систем? Как описывают сами авторы упомянутой статьи, ими были изучены многочисленные материалы по истории техники, обширная мемуарная литература, относящаяся к работе крупных изобретателей. В дальнейшем на протяжении всей истории создания ТРИЗ основным инструментом разработок явилось изучение и обобщение материалов патентного фонда в наиболее активно развивавшихся разделах техники. Было показано, что каждое творческое решение новой технической задачи — независимо от того, к какой области техники оно относится, включает три основных момента:

•постановку задачи и определение противоречия, которое мешает ее решению обычными, уже известными в технике путями;

•устранение причины противоречия с целью достижения нового технического эффекта;

•приведение других элементов совершенствуемой системы в соответствие с измененным элементом (системе придается новая форма, соответствующая новой сущности).

Сообразно с этим процесс творческого решения новой технической задачи обычно должен включать три — отличные по цели и методу — стадии: аналитическую, оперативную и синтетическую.

Этот перечень явился в дальнейшем основой для создания целой серии (модификаций) основного инструмента ТРИЗ — алгоритма решения изобретательских задач (АРИЗов), средств планомерной обработки задачи, при которой происходит постепенное углубление в «физико-техническую» сущность конфликта, его целенаправленное обострение и последующее устранение. Таким образом, изобретатель получил в свое

Вы читаете Учебник по ТРИЗ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату