on a range of global decision scenarios modeled by the International Energy Agency, it will grow so slowly that it will actually lose market share, rising to between 4,590 TWh/yr and 9% market share (“Baseline 2050” scenario) to 5,505 TWh/yr and 13% market share by 2050 (“BLUE hiOil&Gas” scenario). Table 2.5, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2008), 643 pp.

152 C. Goodall, Ten Technologies to Save the Planet (London: Green Profile, 2008), 302 pp.

153 As of 2006, Germany, the United States, and Spain were leading the world in wind power with 22,247, 16,818, and 15,145 megawatts installed capacity, respectively. India and China had 8,000 and 6,050 megawatts, respectively. The United States is now installing more turbines per year than any other country. Table 10.1, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2008), 643 pp.

154 Technological advances, increased manufacturing capacity, and bigger turbines have helped to lower the cost of wind energy at least fourfold since the 1980s. Efficiency has steadily increased and the turbines themselves have become larger and taller, with mass-produced rotors growing from less than 20 meters in 1985 to >100 meters today, roughly the length of an American football field. While not yet price-competitive with coal or gas-fired power plants, wind-powered electricity is getting close.

155 Based on a range of global decision scenarios modeled by the International Energy Agency, global electricity production from wind power will rise from 111 TWh/yr and 1% market share in 2005 to at least 1,208 TWh/yr and 2% market share by 2050 (“Baseline 2050” scenario, with no new incentives), and could rise as high as 6,743 TWh/yr and 17% market share (“BLUE noCCS” scenario, with aggressive incentives and no established carbon sequestration technology). Table 2.5, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2008), 643 pp.

156 The Shockley-Queisser limit.

157 N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science 315 (2007): 798-801.

158 See note 118.

159 M. Lavelle, “Big Solar Project Planned for Arizona Desert,” U.S. News & World Report, February 21, 2008.

160 For more information visit the Trans-Mediterranean Renewable Energy Cooperation (TREC) home page, www.desertec.org.

161 See D. J. C. Mackay, Sustainable Energy without the Hot Air (Cambridge, UK: UIT Cambridge, Ltd., 2009), 370 pp., available for free download at http://www.withouthotair.com. C. Goodall estimates the cost for undersea HVDC cable between Norway and the Netherlands, completed April 2008, at €1 million per kilometer. Ten Technologies to Save the Planet (London: Green Profile, 2008), 302 pp.

162 CSP plants, because they use the traditional turbine method for electricity generation, can also be designed to burn natural gas or coal during nights and cloudy days.

163 A newer concept, called compressed-air storage, is to pump air, rather than water, into a tank or sealed underground cavern.

164 www.google.org/recharge/index.html (accessed March 10, 2009).

165 Especially in thin-film photovoltaics and cheap catalysts, e.g., M. W. Kanan, D. G. Nocera, “In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+,” Science 321 (2008): 1072-1075. According to the International Energy Agency the price of photovoltaic electricity in sunny climes could fall to $0.05 per kWh by 2050.

166 N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science 315 (2007): 798-801.

167 C. Goodall, Ten Technologies to Save the Planet (London: Green Profile, 2008), 302 pp.

168 Based on a range of global decision scenarios modeled by the International Energy Agency, global solar electricity production will rise from 3 TWh/yr (virtually zero market share) in 2005 to 167 TWh/yr (still virtually zero market share) in 2050 (“Baseline 2050” scenario, with no new incentives), to as high as 5,297 TWh/yr and 13% market share by 2050 (“BLUE noCCS” scenario, with aggressive incentives and no established carbon sequestration technology). Table 2.5, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2008), 643 pp.

169 Today, some 82% of the world’s electricity is made from nonrenewable coal (40%), natural gas (20%), uranium (15%), and oil (7%). Hydropower and all other renewables combined provide just 18%. Depending on our choices, they could rise to capture as much as 64% market share by 2050 (in an extremely aggressive scenario) or drop slightly to 15%. The true outcome will likely lie somewhere in between these IEA model simulations, but under no imaginable scenario will we free ourselves from fossil hydrocarbon energy in the next forty years.

170 Energy Technology Perspectives—Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2006), 479 pp.; and Table 2.5, Energy Technology Perspectives 2008: Scenarios and Strategies to 2050 (OECD/International Energy Agency, 2008), 643 pp.

171 “Explosive Growth: LNG Expands in Australia,” The Economist, November 21, 2009, 66-67.

172 “BP Statistical Review of World Energy June 2009,” 45 pp., www.bp.com/statisticalreview (accessed November 28, 2009).

173 More precisely, 150 times current annual production for hard coal, and over 200 times annual production for lignite. T. Thielemann, S. Schmidt, J. P. Gerling, “Lignite and Hard Coal: Energy Suppliers for World Needs until the Year 2100—An Outlook,” International Journal of Coal Geology 72 (2007): 1-14.

174 Equivalent to five hundred 500-megawatt coal-fired power plants. J. Deutch, E. J. Moniz, I. Green et al, The Future of Coal: Options for a Carbon-Constrained World (Cambridge: Massachusetts Institute of Technology, 2007), 105 pp.

175 Fischer-Tropsch technology is one way to do this. Ibid.

176 L. C. Smith, G. A. Olyphant, “Within-Storm Variations in Runoff and Sediment Export from a Rapidly Eroding Coal-Refuse Deposit,” Earth Surface Processes and Landforms 19 (1994): 369- 375.

177 C. Gautier, Oil, Water, and Climate: An Introduction (New York: Cambridge University Press, 2008), 366 pp.

178 T. Thielemann, S. Schmidt, J. P. Gerling, “Lignite and Hard Coal: Energy Suppliers for World Needs until the Year 2100—An Outlook,” International Journal of Coal Geology 72 (2007): 1-14.

179 J. Deutch, E. J. Moniz, I. Green et al, The Future of Coal: Options for a Carbon-Constrained World (Cambridge: Massachusetts Institute of Technology, 2007), 105 pp.

180 “Trouble in Store,” The Economist, March 7, 2009, 74-75.

181 Iowa weather events reconstructed from personal interview with State Climatologist Harry Hillaker in Des Moines, July 16, 2008; also a written summary he prepared in December 2008; also press releases from the Iowa Department of Agriculture and Land Stewardship and the Federal Emergency Management Agency (FEMA).

182 “FEMA, Iowans Mark Six Month Anniversary of Historic Disaster,” Federal Emergency Management Agency, Press Release Number 1763-222, November 26, 2008.

183 “Iowa Department of Agriculture and Land Stewardship Officials Brief Rebuild Iowa Commission on Damage to Conservation Practices from Flooding,” press release, Iowa Department of Agriculture and Land Stewardship, July 31, 2008.

184 D. Heldt, “University of Iowa’s New Flood Damage Estimate: $743 million,” The Gazette, March 13, 2009.

185 California Fire Siege 2007: An Overview, California Department of Forestry and Fire Protection, 108 pp., http://www.fire.ca.gov/index.php (accessed March 22, 2009).

186 Executive Order S-06-08, signed June 4, 2008, by Arnold Schwarzenegger, governor of the State of California.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату