187 Proclamation, “State of Emergency—Water Shortage,” issued February 27, 2009, by Arnold Schwarzenegger, governor of the State of California.

188 J. McKinley, “Severe Drought Adds to Hardships in California,” The New York Times, February 22, 2009. The Central Valley has 4.7 million acres.

189 L. Copeland, “Drought Spreading in Southeast,” USA Today, February 12, 2008; D. Chapman, “Water Fight May Ripple in Georgia,” The Atlanta Journal-Constitution, August 24, 2008.

190 D. W. Stahle et al., “Early Twenty-first-Century Drought in Mexico,” Eos, Transactions, American Geophysical Union 90, no. 11 (March 17, 2009).

191 Drought data from the University College London Global Drought Monitor, http://drought.mssl.ucl.ac.uk/drought.html (accessed March 25, 2009).

192 UN Food and Agricultural Organization Global Information and Early Warning System (FAO/GIEWS), Crop Prospects and Food Situation, no. 2, April 2008. Updates posted bimonthly at http://www.fao.org/giews/english/.

193 Severe drought hit 9.5 million hectares of winter wheat in Henan, Anhai, Shandong, Hebei, Shanxi, Shaanxi, and Gansu provinces. UN FAO/GIEWS Global Watch, January 4, 2009.

194 “1,500 Farmers Commit Mass Suicide in India,” Belfast Telegraph, April 15, 2009.

195 Global flood inventory data downloaded from the Dartmouth Flood Observatory, www.dartmouth.edu/~floods/ (accessed March 25, 2009) indicate 4,553 fatalities and 17,487,312 people displaced between January 3 and November 4, 2008.

196 Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture (London: Earthscan, and Colombo: International Water Management Institute, 2007), 665 pp.

197 I. A. Shiklomanov, “World Fresh Water Resources,” in P. H. Gleick, ed., Water in Crisis (New York: Oxford University Press, 1993), 13-24. Note: It is necessary to cite all of I. A. Shiklomanov’s initials because he also produced two famous geoscientist sons—Alexander Igor and Nikolai Igor— leading to three Shiklomanovs in overlapping fields, creating much confusion for everyone.

198 Average annual water withdrawal estimated at 3,800 km3. O. Taikan, S. Kanael, “Global Hydrological Cycles and World Water Resources,” Science 313, no. 5790 (2006): 1068- 1072. For definitions of withdrawal vs. consumption, see note 227.

199 Global water withdrawal is thought to be about 3,800 km3 per year and global artificial storage capacity is about 7,200 km3. Ibid. For definitions, see note 225.

200 Table 2, “Food and Water,” World Resources 2008 Data Tables (Washington, D.C.: World Resources Institute, 2008).

201 Based on 2010 and 2050 population projections for Burkina Faso, Cape Verde, Chad, Gambia, Guinea- Bissau, Mali, Mauritania, Niger, and Senegal. United Nations, World Population Prospects: The 2008 Revision, http://esa.un.org/unpp/.

202 The Central Arizona Project.

203 R. G. Glennon, Water Follies (Washington, D.C.: Island Press, USA, 2002), 314 pp.

204 Note that in the United States, however, the trend over the last ~40 years has been declining total water consumption (not just per capita), owing to declining industrial use, as well as more efficient agricultural practices, appliances, low flush toilets, and higher density housing.

205 C. J. Vorosmarty, P. Green, J. Salisbury, R. B. Lammers, “Global Water Resources: Vulnerability from Climate Change and Population Growth,” Science 289, no. 5477 (2000): 284-288. The study identifies “severe” water stress as areas where the ratio of human water withdrawal to available river discharge is 0.4 or higher. The described three maps are found in Figure 3 of this paper. They are slightly deceptive in places like the western United States, where the source areas of water (e.g., mountain snowpack) differ from where the water is used (e.g., Tucson, Los Angeles, etc).

206 E.g., “Impending global-scale changes in population and economic development,” the authors conclude, “will dictate the future . . . to a much greater degree than will changes in mean climate.” Ibid.

207 Piped, protected wells or springs, rainwater cisterns, or boreholes.

208 Ethiopians (22%), Somalians (29%), Afghanis and Papua New Guineans (39%), Cambodians (41%), Chadians (42%), Equatorial Guineans and Mozambicans (43%). Data Table 3, P. H. Gleick et al., The World’s Water 2008-2009 (Washington, D.C.: Island Press, 2009), 432 pp.

209 J. Bartram, K. Lewis, R. Lenton, A. Wright, “Focusing on Improved Water and Sanitation for Health,” The Lancet 365, no. 9461 (2005): 810-812.

210 M. Barlow, Blue Gold: The Fight to Stop the Corporate Theft of the World’s Water (New York: The New Press, 2003), 296 pp.; Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water (New York: The New Press, 2007), 196 pp.

211 Mission statement of the World Water Council, www.world watercouncil.org (accessed April 5, 2009).

212 A good account of these battles is the award-winning documentary Flow (2008), www.flowthefilm.com.

213 P. 189, UN World Water Assessment Programme, The United Nations World Water Development Report 3: Water in a Changing World (Paris: UNESCO, and London: Earthscan, 2009), 318 pp.

214 Virtually all countries negotiate water-sharing agreements for transboundary rivers crossing their borders. For emerging ideas on how satellites could change the game, see D. E. Alsdorf et al., “Measuring Surface Water from Space,” Reviews of Geophysics 45, no. 2, article no. RG2002 (2007); D. E. Alsdorf et al., “Measuring global oceans and terrestrial freshwater from space,” Eos, Transactions, American Geophysical Union 88, no. 24 (2007): 253; F. Hossain, “Introduction to the Featured Series on Satellites and Transboundary Water: Emerging Ideas,” Journal of the American Water Resources Association 45, no. 3 (2009): 551-552; S. Biancamaria et al., “Preliminary Characterization of SWOT Hydrology Error Budget and Global Capabilities,” IEEE JSTARS 3, no. 1 (2010): 6-19.

215 The Surface Water Ocean Topography (SWOT) satellite will also measure oceans. It is a joint venture between the space agencies of the United States and France (NASA and CNES).For more, see http://swot.jpl.nasa.gov/index.cfm.

216 E.g., global topography data from SRTM (http://srtm.csi.cgiar.org/) and ASTER (http://asterweb.jpl.nasa.gov/gdem.asp); global image data from Landsat (http://www.landcover.org/index.shtml); and many others.

217 D. Ignatius, “The Climate-Change Precipice,” The Washington Post, March 2, 2007; F. Al-Obaid, “Water Scarcity and Resource War,” Kuwait Times, March 9, 2008; H. A. Amery, “Water Wars in the Middle East: A Looming Threat, The Geographical Journal 168, no. 4 (2002): 313-23; N. L. Poff et al., “River Flows and Water Wars: Emerging Science for Environmental Decision Making,” Frontiers in Ecology and the Environment 1, no. 6 (2003): 298-306; and others.

218 P. 19, UN World Water Assessment Programme, The United Nations World Water Development Report 3: Water in a Changing World (Paris: UNESCO, and London: Earthscan, 2009), 318 pp.

219 P. 163, M. Klare, Resource Wars: The New Landscape of Global Conflict (New York: Holt Paperbacks, 2002), 304 pp.

220 Ibid., p. 139.

221 Between 1948 and 1999 there were 1,831 interactions between countries over water resources, ranging from verbal exchanges to written agreements to military activity. Of these, 67% were cooperative, 28% conflictive, and 5% neutral or insignificant. There were no formal declarations of war made specifically over water. W. Barnaby, “Do Nations Go to War over Water?” Nature 458 (2009): 282-283; other material drawn from S. Yoffe et al., Journal of the American Water Resources Association 39 (2003):

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату