sheet. J. Oerlemans, “Freezes, Floes, and the Future, Nature 462 (2009): 572-573, DOI:10.1038/462572a.

506 Sea levels are not the same everywhere but vary owing to water pile-up from currents, gravitational attraction, water temperature, crustal rebound, and other factors. The above-average sea-level rise along the U.S. coastline is shown by J. X. Mitrovica et al., “The Sea-Level Fingerprint of West Antarctic Collapse,” Science 323, no. 5915 (February 6, 2009): 753, DOI:10.1126/science.1166510; and J. L. Bamber et al., “Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet,” Science 324, no. 5929 (May 15, 2009): 901-903, DOI:10.1126/science.1169335. The latter study also suggests a global average sea-level increase of 3.2 meters for a WAIS collapse, lower than the five-meter estimate by the IPCC AR4.

507 For more, see D. G. Vaughan, R. Arthern, “Why Is It Hard to Predict the Future of Ice Sheets?” Science 315, no. 5818 (2007): 1503-1504, DOI:10.1126/science.1141111; and R. B. Alley et al., “Understanding Glacier Flow in Changing Times,” Science 322 (2008): 1061- 1062.

508 S. A. Zimov et al., “Permafrost and the Global Carbon Budget,” Science 312, no. 5780 (2006): 1612-1613, DOI:10.1126/science.1128908; E. A. G. Schuur et al., “Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle,” Bioscience 58, no. 8 (2008): 701-714; C. Tarnocai et al., “Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region,” Global Biogeochemical Cycles 23, GB2023 (2009), DOI:10.1029/2008GB003327.

509 For more on the challenges surrounding this problem, see S. E. Trumbore, C. I. Czimczik, “An Uncertain Future for Soil Carbon,” Science 321 (2008): 1455-1456.

510 By drilling cores to the bottom of peatlands and radiocarbon dating their age, we know that northern peatlands started spreading quickly about 11,700 years ago as the Younger Dryas cold period ended. This methane shows up in ice cores of Greenland and Antarctica. L. C. Smith et al., “Siberian Peatlands a Net Carbon Sink and Global Methane Source since the Early Holocene,” Science 303 (2004): 353-356; and G. M. MacDonald et al., “Rapid Early Development of Circumarctic Peatlands and Atmospheric CH4 and CO2 Variations,” Science 314 (2006): 285-288. Sweden study is E. Dorrepaal et al., “Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic,” Nature 460 (2009): 616-619, DOI:10.1038/nature08216. The two West Siberia studies are K. E. Frey and L. C. Smith, “Amplified Carbon Release from Vast West Siberian Peatlands by 2100,” Geophysical Research Letters 32, L09401 (2005), DOI:10.1029/2004GL022025, 2005; and D. W. Beilman et al., “Carbon Accumulation in Peatlands of West Siberia over the Last 2000 Years,” Global Biogeochemical Cycles 23, GB1012 (2009), DOI:10.1029/2007GB003112. Alaska study is E. A. G. Schuur et al., “The Effect of Permafrost Thaw on Old Carbon Release and Net Carbon Exchange from Tundra,” Nature 459 (2009): 556-559, DOI:10.1038/nature08031.

511 In other words a large generation of parents born when fertility was still high. Population momentum also works in reverse—for example, elderly countries would continue to shrink even if fertility were increased, owing to a small generation of parents born when fertility was low.

512 As a percentage of GNP, over the period 1880-1913 national investment and national savings were more strongly correlated in the industrialized countries than they were in 1999, meaning that investment today relies more on domestic saving and less on foreign investment than it did in 1913. Pp. 89-90 and Figure 3.3, P. Knox et al., The Geography of the World Economy, 4th ed. (New York: Oxford University Press, 2003), 437 pp.

513 Just before World War I broke out, merchandise trade averaged 12% of gross national output for industrialized nations, a level not attained again until the 1970s. P. 32, M. B. Steger, Globalization: A Very Short Introduction (New York: Oxford University Press, 2003), 147 pp.

514 Global Trends 2025: A Transformed World (Washington, D.C.: U.S. National Intelligence Council, 2008), 99 pp.

515 “Green with Envy: The Tension between Free Trade and Capping Emissions,” The Economist, November 21, 2009.

516 Nataliya Ryzhova and Grigory Ioffe document hyberbolic assertions ranging from ten to twelve million Chinese already inside Russia to predictions of forty million by the year 2020. Russian migration scholars estimate a current figure of only four hundred thousand Chinese. N. Ryzhova, G. Ioffe, “Trans-border Exchange between Russia and China: The Case of Blagoveshchensk and Heihe,” Eurasian Geography and Economics 50, no. 3 (2009): 348-364, DOI:10.2747/1539-7216.50.3.348.

517 Ryzhova and Ioffe note thirty-four thousand Chinese labor migrants in Amur Oblast versus an official statistic of just 435. Ibid.

518 B. Lo, “The Long Sunset of Strategic Partnership: Russia’s Evolving China Policy,” International Affairs 80, no. 2 (2004): 295-309. This contested island was finally ceded to China in 1991.

519 W-J Kim, “Cooperation and Conflict among Provinces: The Three Northeastern Provinces of China, the Russian Far East, and Sinuiju, North Korea,” Issues & Studies 44, no. 3 (September 2008): 205-227. “Development of Trade and Economic Collaboration between China and Primorye Discussed in Vladivostok,” http://vladivostoktimes.ru/show/?id=48916&p= (accessed March 11, 2010).

520 In 2004 Turkey signed a deal to send water by supertanker to Israel. The program has since struggled off and on, but Israel has floated the idea of a water pipeline from Turkey. C. Recknagel, “Can ‘Wet’ Countries Export Water to ‘Dry’ Ones?” Radio Free Europe, March 21, 2009, www.rferl.org/Content/Can_Wet_Countries_Export_Water_To_Dry_Ones/1514322.html.

521 As of 2009 the eastern route is mostly done, the central route is anticipated for 2014, and the controversial western route through mountains slated for completion in 2050. S. Oster, “China Slows Water Project,” The Wall Street Journal, December 31, 2008.

522 P. Annin, The Great Lakes Water Wars (Washington, D.C.: Island Press, 2006), 303 pp.

523 Quebec premier Robert Bourassa and future prime minister John Turner. R. MacGregor, “A Visionary’s Epiphany about Water,” The Globe and Mail, October 5, 2009, www.theglobeandmail.com/news/national/a-visionarys-epiphany-about-water/article1311853/. See also pp. 60-63, P. Annin, The Great Lakes Water Wars (Washington, D.C.: Island Press, 2006), 303 pp.

524 Modeling studies suggest that the GRAND Canal project would delay spring ice-out on Hudson Bay as much as a month each year, causing colder, wetter conditions locally during the peak of the growing season, a change in coastal flora, the retreat of forests from the coast, and the growth of permafrost. W. R. Rouse, M-K Woo, J. S. Price, “Damming James Bay: 1. Potential Impacts on Coastal Climate and the Water Balance,” The Canadian Geographer 36, no. 1 (1992): 2-7.

525 F. Pierre Gingras, “Northern Waters: A Realistic, Sustainable and Profitable Plan to Exploit Quebec’s Blue Gold,” Montreal Economic Institute, Economic Notes (special edition, July 2009), www.iedm.org/uploaded/pdf/juillet09_en.pdf.

526 P. Micklin, “‘Project of the Century’: The Siberian Water Transfer Scheme,” paper prepared for Engineering Earth; the Impacts of Megaengineering Projects, University of Kentucky, July 21-24, 2008.

527 In 2004. “Luzhkov Wants to Reverse a River,” The Moscow Times, December 10, 2002; N. N. Mikheyev, “Voda bez granits (Water without Limits),” Melioratsiya i vodnoye khozyaystvo 1 (2002):32-34; see also F. Pearce, “Russia Reviving Massive River Diversion Plan,” New Scientist, February 9, 2009, www.newscientist.com/article/dn4637-russia-reviving-massive-river-diversion-plan.html?full=true.; and P. Micklin, “The Aral Sea Crisis and Its Future: An Assessment in 2006,” Eurasian Geography and Economics 47, no. 5 (2006): 546-567, DOI:10.2747/1538-7216.47.5.546.

528 The Ob’, Yenisei, and Lena rivers dump significant amounts of freshwater into the Arctic Ocean, much of which freezes into sea ice, then eventually flushes out through Fram Strait or the Canadian Archipelago toward the North Atlantic, where it melts, freshening ocean surface waters and thus impeding deepwater sinking of the thermohaline circulation.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату