нижнего края полоски фильтровальной бумаги, а затем опускали его в специальный растворитель. Последний, по закону капиллярности, поднимался по полоске вверх. Проходя через высушенную каплю, растворитель увлекал за собой отдельные аминокислоты со скоростью, характерной для каждой конкретной аминокислоты. В итоге смесь аминокислот оказывалась разделенной. Расположение аминокислот на бумаге выявлялось посредством специальных физических и химических методов. Определить количество аминокислоты в каждом пятне не составляло труда.

Новый метод хроматографии на бумаге оказался на редкость эффективным. Он прост и дешев, не требует сложной аппаратуры, позволяет тщательно разделять ничтожные количества компонентов смеси. Метод получил широкое применение во всех областях биохимии. Им, в частности, воспользовался Кэлвин в своих экспериментах со смесью фотосинтезирующих растительных клеток. По существу, исследования без применения метода хроматографии на бумаге стали немыслимы. С его помощью появилась возможность установить точное количество различных аминокислот того или иного белка. Это в свою очередь позволило определить аминокислотный состав одного белка за другим, подобно тому как устанавливают число атомов различных элементов, входящих в то или иное соединение.

Расположение аминокислот

Но всего этого оказалось недостаточно. Как известно, химиков интересует не только число атомов в любом соединении, но и их расположение. То же относится и к аминокислотам в молекуле белка. Вопрос о расположении аминокислот сложен. Даже если в молекуле всего несколько десятков аминокислот, число возможных сочетаний астрономически велико, а если их больше 500 (как, например, в гемоглобине, где молекула средней величины), число возможных расположений выражается цифрой из 600 знаков. Как же из такого невообразимого числа возможностей правильно выбрать наиболее вероятное расположение аминокислот каждого конкретного белка?

Оказалось, что с помощью метода хроматографии на бумаге эта проблема разрешается очень легко. Однако английскому биохимику Фредерику Сэнгеру (род. в 1918 г.) понадобилось восемь лет, чтобы исследовать этим методом молекулу инсулина, состоящую всего из 50 аминокислот! Сэнгер расщеплял молекулу на части, методом хроматографии на бумаге разделял короткие цепи и определял слагающие их аминокислоты, а также порядок расположения последних. Это было нелегкой задачей, ибо даже четырехкомпонентный фрагмент может располагаться 24 различными способами. Выявив, каким более коротким цепям дают начало длинные цепи, Сэнгер мало-помалу воссоздал структуру более длинных цепей. К 1953 г. он уже знал точный порядок аминокислот в молекуле инсулина.

Рис. 6. Химическая формула, показывающая сложную структуру белка.

Выше изображена часть одной из двух пептидных цепей, которые образуют молекулу инсулина. Полипептидный скелет повторяется по центру цепи, образованной связанными аминокислотами и их различными боковыми цепями. Ниже изображен пептид, содержащий три аминокислоты, R — боковые аминокислотные цепи.

Вслед за Сэнгером его методом воспользовался американский биохимик Винсент Виньо (род. в 1901 г.). Он применил его к очень простой молекуле окситоцина (гормона задней доли гипофиза), состоящей всего из восьми аминокислот. Установив расположение аминокислот, Виньо попытался синтезировать соединение таким образом, чтобы каждая аминокислота находилась на полагающемся ей месте. Синтез был осуществлен в 1955–1956 гг.; полученный в результате синтетический окситоцин по своим свойствам не уступал природному гормону. Аналитический метод Сэнгера, равно как и синтез Виньо, впоследствии был повторен в более широком масштабе. В 1960 г. ученые установили расположение аминокислот в ферменте, названном рибонуклеазой. Молекула рибонуклеазы состоит из 124 аминокислот, это в два с половиной раза превышает число аминокислот в молекуле инсулина. Фрагменты рибонуклеазы синтезировали, после чего изучали их ферментативную активность. Таким образом, к 1963 г. удалось установить, что для функционирования молекулы существенно необходимы аминокислоты 12 и 13 (гистидин и метионин). Это было значительным шагом вперед в определении точного механизма функционирования молекулы фермента.

К середине текущего столетия белковая молекула оказалась «прирученной».

Глава XIV

Молекулярная биология: нуклеиновая кислота

Вирусы и гены

Итак, молекула белка стала управляемой. И вдруг совершенно неожиданное, поразительное открытие: химическая основа жизни вовсе не молекула белка, а другая частичка. Только когда принялись за изучение природы фильтрующихся вирусов, стала ясна огромная важность этого открытия.

Природа вирусов представляла загадку для целого поколения. Известно, что вирусы вызывают заболевания, были даже разработаны методы борьбы сними. Однако физические свойства вирусов все еще оставались неизвестными. Решающую роль в определении размера вирусов сыграло изобретение фильтров достаточно мелкопористых, чтобы задерживать вирусные частицы. Вирусы оказались немного меньше, чем мельчайшие из известных клеток, но значительно больше самой крупной белковой молекулы. Разглядеть вирусы позволил лишь электронный микроскоп. Их размеры варьируют в широких пределах, начиная от вирусов — мельчайших точек — и до сравнительно крупных структур строго геометрической формы с различимым внутренним строением. К наиболее крупным вирусам относятся бактериофаги, которые «охотятся» за мелкими микроорганизмами; некоторые фаги имеют хвостики и напоминают крошечных головастиков. Крупнее вирусов, но мельче бактерий риккетсии, названные так в честь Риккетса. Риккетсии вызывают, в частности, пятнистую лихорадку Скалистых гор — заболевание, изученное бактериологами.

Возник вопрос, являются ли вирусы живыми организмами. В 1935 г. американский биохимик Уэнделл Мередит Стенли (род. в 1904 г.), работая с экстрактом вируса табачной мозаики, получил игольчатые кристаллы. Оказалось, что эти кристаллы обладают высокой инфекционностью. Другими словами, ученый получил вирус в кристаллическом виде, а живые кристаллы — явление трудно объяснимое.

С другой стороны, нельзя ли допустить, что клеточная теория неточна и что клетки не являются неделимыми единицами жизни? Вирус много мельче клетки и в противоположность ей ни при каких условиях не способен существовать независимо. Однако вирусу удается проникнуть в клетку, размножиться там и в некоторых основных проявлениях вести себя, как живое существо.

Нет ли каких-либо внутриклеточных образований, каких-либо доклеточных элементов, которые были бы действительной основой жизни — структурой, управляющей остальной частью клетки? Не является ли вирус таким клеточным компонентом, когда-то и как-то отщепившимся от клетки, но готовым заселить ее и сделать чуждой истинному «хозяину»?

Если это так, такие доклеточые компоненты должны были бы находиться и в нормальных клетках. Кандидатами на эту роль, вероятнее всего, следует считать хромосомы. В первые годы нашего столетия стало очевидным, что хромосомы несут в себе факторы, управляющие наследованием физических свойств. Это определяет их руководящее положение в клетке, как и можно было ожидать от ключевых доклеточных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату