Цементация – диффузионное насыщение

поверхностного слоя детали углеродом. После цементации выполняется термическая обработка – закалка и низкий отпуск. Такие детали должны иметь твердую закаленную поверхность, хорошо сопротивляющуюся истиранию, и вязкую сердцевину, способную выдерживать динамические нагрузки Цементации подлежат детали из стали, содержащей до 0,3 % углерода. Поверхность деталей насыщается углеродом в пределах от 0,8 до 1 % цементации, осуществляется в твердых, жидких и газообразных средах. В качестве карбюризатора в частности служит смесь древесного угля (60–90 %) и углекислых солей бария (BaCO3) и натрия (NaCO3).

При нагреве углерод древесного угля соединяется с кислородом воздуха, образуя окись углерода (CO), которая разлагается с образованием атомарного углерода, диффундирующего в деталь:

2COCO2 + Cатомарный.

С повышением температуры и времени выдержки толщина цементированного слоя увеличивается, глубина его достигает 0,5–2 мм на каждые 0,1 мм толщины слоя, требуется выдержка около 1 ч. При массовом и крупносерийном производствах хорошие результаты дает газовая цементация в специальных герметически закрытых печах. По сравнению с цементацией в твердом карбюризаторе газовая цементация дает возможность повысить скорость процесса, увеличить пропускную способность оборудования и производительность труда.

После цементации детали подвергают термической обработке для обеспечения высокой твердости поверхности, исправления структуры перегрева и устранения карбидной сетки в цементированном слое. Закалку производят при температуре +780–850 °C с последующим отпуском при +150–200 °C.

Нитроцементацией называется процесс химико—термической обработки, при котором происходит одновременное насыщение поверхностных слоев стальных изделий углеродом и азотом в газовой среде. После нитроцементации детали закаливают и затем подвергают низкому отпуску при температуре от +160 до +180 °C. Твердость поверхностного закаленного и нитроцементированного слоя – 60–62 HRC. При нитроце—ментации совмещают процессы газовой цементации и азоти

рования. В газовую смесь входят эндогаз, до 13 % природного газа и до 8 % аммиака. В рабочее пространство шахтной печи вводят в виде капель жидкий карбюризатор – триэтаноламин.

Для легированных сталей процесс нитроцементации выполняют в атмосфере с минимальным количеством аммиака – до 3 %.

7. Химико—термическая обработка: азотирование, ионное азотирование

Химико—термическая обработка – азотирование применяется с целью повышения твердости поверхности у различных деталей – зубчатых колес, гильз, валов и др. изготовленных из сталей 38ХМЮА, 38ХВФЮА, 18Х2Н4ВА, 40ХНВА и др. Азотирование – последняя операция в технологическом процессе изготовления деталей. Перед азотированием проводят полную термическую и механическую обработку и даже шлифование, после азотирования допускается только доводка со съемом металла до 0,02 мм на сторону. Азотированием называется химико—термическая обработка, при которой происходит диффузионное насыщение поверхностного слоя азотом. В результате азотирования обеспечиваются: высокая твердость поверхностного слоя (до 72 HRC), высокая усталостная прочность, теплостойкость, минимальная деформация, большая устойчивость против износа и коррозии. Азотирование проводят при температурах от +500 до +520 °C в течение 8–9 ч. Глубина азотированного слоя – 0,1–0,8 мм. По окончании процесса азотирования детали охлаждают до +200–300 °C вместе с печью в потоке аммиака, а затем – на воздухе.

Поверхностный слой не поддается травлению. Глубже него находится сорбитообразная структура. В промышленности широко применяется процесс жидкостного азотирования в расплавленных цианистых солях. Толщина азотированного слоя – 0,15—0,5 мм.

Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей – до 350 HV, легированных – до 1100 HV. Недостатки процесса – токсичность и высокая стоимость цианистых солей.

В ряде отраслей промышленности используется ионное азотирование, которое имеет ряд преимуществ перед газовым и жидкостным. Ионное азотирование осуществляется в герметичном контейнере, в котором создается разреженная азотсодержащая атмосфера. Для этой цели применяются чистый азот, аммиак или смесь азота и водорода. Размещенные внутри контейнера детали подключают к отрицательному полюсу источника постоянной электродвижущей силы Они выполняют роль катода. Анодом служит корпус контейнера. Между анодом и катодом включают высокое напряжение (500—1000 В) – происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу – катоду. Возле катода создается высокая напряженность электрического поля. Высокая кинетическая энергия, которой обладали ионы азота, переходит в тепловую. Деталь за короткое время (15–30 мин) разогревается до от +470 до +580 °C, происходит диффузия азота вглубь металла, т. е. азотирование.

Ионное азотирование по сравнению с азотированием в печах позволяет сократить общую продолжительность процесса в 2–3 раза, уменьшить деформацию деталей за счет равномерного нагрева.

Ионное азотирование коррозионно—стойких сталей и сплавов достигается без дополнительной депассивирующей обработки. Толщина азотированного слоя – 1 мм и более, твердость поверхности – 500— 1500 HV. Ионному азотированию подвергают детали насосов, форсунок, ходовые винты станков, валы и многое другое.

ЛЕКЦИЯ № 9. Классификация сталей и их назначение

1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства

Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь—серебрянку, сортовую сталь, штамповки и слитки. Эти стали являются основным материалом для изготовления таких деталей машин, как валы, шпиндели, винты, гайки, упоры, тяги, цилиндры гидроприводов, звездочки цепных передач, т. е. деталей различной степени нагружения. Различные специальные виды термообработки углеродистых сталей проводятся с целью обеспечения необходимых параметров вязкости, упругости и твердости. В конечном итоге термическая обработка данных сталей и деталей приводит к увеличению их износостойкости и надежности. Углеродистые качественные конструкционные стали обладают более высокими механическими свойствами, чем стали обыкновенного качества, за счет меньшего содержания в них фосфора, серы и других неметаллических включений. По видам обработки углеродистые конструкционные стали подразделяются на горячекатаные, кованые, калиброванные и серебрянку (со специальной отделкой поверхности). В зависимости от состояния материала указанные стали выпускаются без термической обработки, термически обработанные (Т) и нагартованные (Н). В соответствии с назначением горячекатаная и кованая углеродистые конструкционные стали делятся на подгруппы: «а» – для горячей обработки давлением; «б» – для механической обработки резанием на станках; «в» – для холодного волочения.

Легированными называют стали, которые, кроме обычных примесей (марганца, кремния, серы и фосфора), содержат ряд элементов, специально вводимых в сталь при ее выплавке для получения заданных свойств. Эти элементы называют легирующими. В качестве

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×