шем словаре должно остаться только одно, чтобы избежать ложного прочтения.
Крик проделал те же манипуляции с буквами А, С, G и Т. Он сразу же удалил из словаря AAA, ССС, GGG и ТТТ. Затем он сгруппировал оставшиеся 60 слов таким образом, чтобы каждая группа содержала слова из тех же трех букв, следующих друг за другом в том же порядке. Например, слова ACT, СТА и ТАС объединены в группу, поскольку в них С всегда стоит после А, А — после Т, а Т — после С. В другой группе мы имеем слова АТС, ТСА и CAT. Если вы проделаете то же самое, то получите ровно 20 групп — столько же, сколько разных аминокислот используется в белках! Казалось, это не могло быть простым совпадением. По Крику только одно слово из группы кодировало аминокислоту, а остальные слова должны были быть под запретом в генетическом коде.
Напрасно Крик призывал не относиться слишком серьезно к его версии генетического кода: «Наши предположения и догадки относительно генетического кода, который нам предстоит разгадать, настолько шатки и умозрительны, что мы не можем на них полагаться. Мы взяли их за основу просто потому, что, базируясь на простых и допустимых с точки зрения физики постулатах, нам удалось получить магическое число 20». Ведь открытая на тот момент структура двойной спирали ДНК сама по себе не предоставляла никаких свидетельств относительно генетического кода. Но ликование ученых не прекращалось. Через пять лет уже никто не сомневался в верности кода Крика.
Однако время теорий стремительно уходило. На смену им шел эксперимент. В 1961 году Маршалл Ниренберг (Marshall Nirenberg) и Иоганн Маттеи (Johann Matthaei) расшифровали одно «слово» генетического кода. Для этого они просто синтезировали молекулу РНК, состоящую только из буквы U (урацил — эквивалент тимина (буквы Т) в молекуле ДНК). Затем синтезированные молекулы были помещены в суспензию рибосом и активированных аминокислот. Система заработала, выдав на-гора белковый поли мер, состоящий из одной аминокислоты — фенилаланина. Первое слово кода было взломано: UUU означает фенила- ланин. Это открытие похоронило лишенный знаков препинания код Крика. Если бы Крик был прав, генетикам никогда не пришлось бы столкнуться с мутацией «сдвига рамки считывания», когда потеря одного нуклеотида в середине гена превращает в мусор весь последующий код. Впрочем, версия кода, которую предпочла Природа, хотя и не столь элегантна, но более устойчива к мутациям замены одного нуклеотида на другой, поскольку одна и та же аминокислота может кодироваться несколькими кодонами (Hayes В. 1998. The invention of the genetic code.
К 1965 году уже весь код был известен, и началась эра современной генетики. Вершины, которые с таким трудом покоряли генетики 1960-х, в 1990-х годах стали рутиной. И вот, в 1995 году наука вернулась к давно уже умершим пациентам Арчибальда Гаррода с их чернеющей мочой. Теперь наука уже точно могла сказать, в каком месте и в какой хромосоме происходит грамматическая ошибка кода, ведущая к алкаптонурии. История этой болезни оказалась в сжатом виде историей генетики XX столетия. Напомним, алкапто- нурия — это очень редкое и неопасное заболевание, легко устранимое, если придерживаться определенной диеты. Именно поэтому болезнь оставалась неинтересной для врачей и науки. В 1995 году два испанских ученых, подталкиваемые главным образом значимостью болезни в плане истории генетики, взялись за раскрытие тайны. В экспериментах с плесневым грибком
Это пример «скучного» гена, выполняющего «скучную» биохимическую работу в организме человека, поломка которого ведет к «скучной» болезни. В нем нет ничего удивительного или уникального, например тайных связей с интеллектом человека или гомосексуальными наклонностями. Он ничего не расскажет нам о происхождении человека. Он не проявляет своего эгоистичного характера, как некоторые другие гены. Он не нарушает законов Менделя и не может убивать или калечить. У всех живых существ на планете этот ген делает одну и ту же работу. Он есть даже у пекарских дрожжей и выполняет те же функции, что и у человека. Тем не менее ген гомогентизатдегидрогеназы заслужил упоминания в истории генетики за ту роль, которую он сыграл в понимании законов наследственности. Даже этот унылый маленький ген символизирует красоту и совершенство законов природы, сформулированных когда-то Грегором Менделем, являясь их материальным воплощением в микроскопической спирально завитой двуцепочечной молекуле из четырех букв, лежащей в основе всего живого на Земле.
Хромосома 4 Злой рок
Откройте любой каталог генома человека, и вместо списка потенциалов и возможностей человека вы увидите длинный перечень заболеваний со сложными трудно запоминающимися названиями, которые состоят из двух-трех имен центральноевропейских врачей. Один ген вызывает болезнь Нимана-Пика, а другой— синдром Вольфа-Хиршхорна, еще множество генов являются причинами заболеваний, имеющих причудливые названия. Создается впечатление, что гены — это возбудители болезней. «Открыт ген психического заболевания», «Ген ранней дистонии», «Выделен ген рака почек», «Установлена связь аутизма с геном переноса серотонина», «Новый ген болезни Альцгеймера», «Генетика маниакального поведения» — обычные заголовки печатных и Интернет-изданий.
Давать генам названия болезней — это такая же нелепая идея, как называть органы человека присущими им заболеваниями: печень у человека для цирроза, сердце — для инфаркта, мозг — для безумия. Каталожные названия генов указывают не на глубину наших знаний, а на меру нашего незнания того, как работает геном. Действительно, все, что нам известно о работе большинства генов, — это то, какая болезнь у человека разовьется, если данный ген перестанет работать. Это ведет к появлению убийственно неверных сентенций в публикациях, отражающих ход мысли не только в головах широкой публики, но и врачей: «У больного X обнаружен ген Вольфа-Хиршхорна». Не верно. У всех у нас есть ген Вольфа-Хиршхорна. Как иронично это не звучит, его нет только у людей, страдающих синдромом Вольфа- Хиршхорна. Болезнь как раз является результатом полного отсутствия этого гена в хромосомах больного. Только благодаря тому что этот ген работает, все остальные люди не страдают данным синдромом. Причиной заболеваний являются мутации в генах, а не сами гены.
Синдром Вольфа-Хиршхорна — это редкое и очень тяжелое заболевание. Данный ген настолько необходим организму, что его отсутствие приводит к гибели в раннем возрасте. Этот ген, лежащий на хромосоме 4, является, пожалуй, одним из наиболее известных генов, связанных с генетическими заболеваниями. Описано совершенно другое заболевание, также связанное с поломками в этом гене: хорея Хантингтона. Итак, мутация в гене вызывает хорею Хантингтона, а отсутствие гена — синдром Вольфа- Хиршхорна. Нам почти ничего неизвестно о том, какие функции выполняет этот ген в обычной жизни, но в мельчайших деталях мы знаем, где именно в гене могут произойти ошибки и к каким ужасающим последствиям для организма они приводят. Ген содержит многократно повторяющееся «слово»: CAG CAG CAG CAG ... Это слово повторяется иногда 6 раз, иногда 30, а иногда — сотни раз. Ваша судьба, ваше здоровье и ваша жизнь находятся в руках этой повторяющейся последовательности. Если «слово» повторяется 35 раз или меньше, все нормально. У большинства из нас в геноме данный ген содержит 10-15 повторов. Если слово повторяется 39 раз или больше, то в середине жизни или ближе к старости человек