Подчеркнем еще раз, что это не означает идентичности картины, которую будут видеть разные наблюдатели; как мы показали ранее, их наблюдения могут существенно расходиться. Дело не в этом. Подобно различиям в ощущениях энтузиастов прыжков на палках с пружиной на Земле и на Луне, различия в наблюдениях отражают особенности обстановки, в которой проводились наблюдения, ведь наблюдатели находились в относительном движении. Но то, что они наблюдали, управлялось одними и теми же законами.

Открыв принцип эквивалентности, основу общей теории относительности, Эйнштейн значительно расширил этот тип симметрии. Он показал, что законы физики в действительности идентичны для всех наблюдателей, даже для тех, которые находятся в состоянии сложного ускоренного движения. Вспомним, что Эйнштейн придал этой идее законченный вид, осознав, что ускоряющийся наблюдатель имеет полное право считать, что он находится в состоянии покоя, утверждая, что сила, действующая на него, обусловлена гравитационным полем. После включения в данную систему гравитации все возможные точки зрения становятся абсолютно равноправными. Помимо несомненной эстетической привлекательности такой равноправной трактовки всех видов движения, эти принципы симметрии, как мы видели выше, играют ключевую роль в поразительных выводах о характере гравитации, к которым пришел Эйнштейн.

Есть ли еще принципы симметрии, имеющие дело с пространством, временем и движением, которым должны удовлетворять законы физики? Если вы основательно поразмыслите об этом, то сможете указать еще один принцип. Законы физики не должны зависеть от того, под каким углом вы проводите свои наблюдения. Например, если вы проводите какой-то эксперимент и после этого решаете повернуть вашу установку и повторить опыт, должны действовать те же самые законы. Этот принцип известен под названием вращательной симметрии, он означает, что законы физики трактуют все возможные направления как равноправные. Данный принцип симметрии имеет такое же значение, как и рассмотренные выше.

Существуют ли какие-либо еще принципы симметрии? Не пропустили ли мы какой-нибудь из них? Вы можете предложить калибровочные симметрии, связанные с негравитационными силами, обсуждавшиеся в главе 5. Да, это несомненные симметрии в природе, но они являются более абстрактными по своему характеру; в данный момент мы хотим сконцентрировать наше внимание на тех видах симметрии, которые имеют непосредственное отношение к пространству, времени или движению. Если добавить это условие, по всей вероятности, вам не удастся предложить чего-либо нового. На самом деле в 1967 г. физики Сидни Коулмен и Джеффри Мандула сумели доказать, что никакие другие виды симметрии, связанные с пространством, временем или движением, не могут сочетаться с принципами симметрии, рассмотренными выше, и приводить к теории, имеющей какое-либо отношение к нашему миру.

Однако впоследствии более тщательное изучение этой теоремы, основанное на догадках ряда физиков, позволило обнаружить одну небольшую лазейку: результат Коулмена-Мандулы не охватывает симметрии, связанные с понятием, известным как спин.

Спин

Элементарные частицы, например электрон, могут вращаться вокруг атомных ядер подобно тому, как Земля вращается вокруг Солнца. Однако может показаться, что в традиционной точечной модели электрона нет аналога вращению Земли вокруг своей оси. Когда объект вращается, точки, расположенные на оси вращения, подобно центральной точке фрисби-диска, остаются неподвижными. Но если какой-нибудь объект является действительно точечным, у него нет «других точек», которые не находились бы на оси вращения. В результате может показаться, что такого понятия, как вращение точечного объекта, попросту не существует. Много лет назад исследование этого вопроса привело к открытию еще одного поразительного квантового эффекта.

В 1925 г. голландские физики Джордж Уленбек и Сэмюэль Гоудсмит осознали, что многие удивительные результаты, относящиеся к свойствам излучаемого и поглощаемого атомами света могут быть объяснены, если предположить, что электроны обладают некоторыми весьма специфичными магнитными свойствами. Примерно за сто лет до этого французский физик Андре-Мари Ампер показал, что магнетизм обязан своим происхождением движению электрических зарядов. Уленбек и Гоудсмит исследовали этот факт и установили, что только один конкретный вид движения электрона может привести к появлению магнитных свойств, на которые указывали экспериментальные данные: это было вращательное движение — спин электрона. Вопреки канонам классической физики, Уленбек и Гоудсмит провозгласили, что электрон, подобно Земле, может кружить по орбите и одновременно вращаться вокруг собственной оси.

Считали ли Уленбек и Гоудсмит, что электрон действительна вращается вокруг своей оси? И да, и нет. На самом деле их работа показала, что существует квантово-механическое понятие спина, которое в определенной степени напоминает вращение объекта вокруг собственной оси, но которое, по сути, представляет квантово-механическое явление. Это одно из тех свойств микромира, которое не имеет аналога в классической физике, а является экспериментально подтверждаемой квантовой особенностью. Представьте себе, например, вращающегося фигуриста. Когда он прижимает руки к телу, его вращение ускоряется, когда разводит руки в стороны — вращение замедляется. Однако рано или поздно, в зависимости от того, с какой энергией он начал свое вращение, его движение замедлится, и он остановится. Не так обстоят дела со спином, открытым Уленбеком и Гоудсмитом. Согласно их работе и данным последующих исследований, каждый электрон во Вселенной всегда вращается с постоянной и никогда не меняющейся скоростью. Спин электрона не является промежуточным состоянием движения, которое мы наблюдаем в случае более привычных объектов, по тем или иным причинам пришедших во вращение. Напротив, спин электрона является внутренним, присущим электрону свойством, похожим в этом отношении на массу или электрический заряд. Если бы электрон не вращался, он не был бы электроном.

Хотя первые работы были посвящены электронам, впоследствии физики показали, что понятие спина применимо ко всем частицам вещества, образующим три семейства из табл. 1.1. Это утверждение истинно вплоть до мельчайших деталей: все частицы вещества (а также их античастицы) имеют спин, равный спину электрона. На своем специальном языке физики говорят, что все частицы вещества имеют «спин 1/2», где значение 1/2 представляет собой, грубо говоря, квантово-механическую меру скорости вращения частиц.[57] Более того, физики показали, что частицы, передающие негравитационные взаимодействия, — фотоны, слабые калибровочные бозоны и глюоны — также обладают спином, который оказался в два раза больше, чем спин частиц вещества. Все эти частицы имеют «спин 1».

А как насчет гравитации? Еще до появления теории струн физики смогли установить, какой спин должен иметь гипотетический гравитон, чтобы он мог переносить гравитационное взаимодействие. Полученный ими ответ гласил: удвоенный спин фотонов, слабых калибровочных бозонов и глюонов — т.е. «спин 2».

В теории струн спин, так же как масса и константы других взаимодействий, связан с модой колебания струны. Как и в случае с точечными частицами, было бы не совсем правильно думать, что спин, который несет струна, возникает из-за того, что она действительно вращается в пространстве, однако эта картина дает хороший образ для представления. Кстати, теперь можно уточнить одно важное обстоятельство, с которым мы столкнулись ранее. В 1974 г. Шерк и Шварц провозгласили, что теория струн должна рассматриваться как квантовая теория, включающая гравитационное взаимодействие. Такой вывод стал возможен потому, что они обнаружили: в спектре колебаний струн обязательно должна присутствовать мода, которая соответствует безмассовой частице со спином 2. Но именно эти характеристики являются отличительными признаками гравитона. А где гравитон, там и гравитация.

Получив основные представления о спине, вернемся к той роли, которую он играет в качестве упомянутой в предыдущем разделе лазейки в обход теоремы Коулмена-Мандулы, касающейся возможных видов симметрии в природе.

Суперсимметрия и суперпартнеры

Как мы уже подчеркивали, хотя понятие спина имеет поверхностное сходство с образом

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату