вращающегося волчка, оно имеет и значительные отличия, связанные с его квантовой природой. Открытие спина в 1925 г. показало, что имеется еще один вид вращательного движения, который попросту не существует в чисто классической Вселенной.

Это позволяет задать следующий вопрос: если обычное вращательное движение приводит к принципу симметрии, носящему название инвариантности относительно вращений («физика рассматривает все возможные направления в пространстве как равноправные»), не ведет ли это более специфическое вращательное движение еще к одному принципу симметрии законов природы? Примерно к 1971 г. физики показали, что ответ на этот вопрос положителен. Хотя полное доказательство достаточно сложно, основная идея состоит в том, что если рассматривать спин с математической точки зрения, возможна ровно одна дополнительная симметрия законов природы. Она получила название суперсимметрии.[58]

Суперсимметрии не может быть поставлено в соответствие простое и интуитивно понятное изменение точки зрения наблюдателя: сдвиги во времени, пространственном положении, угловой ориентации и скорости движения уже исчерпали эти возможности. Однако поскольку спин представляет собой «подобие вращательного движения, имеющее квантово-механическую природу», суперсимметрия связана с изменением точки зрения наблюдателя в «квантово-механическом расширении пространства и времени».

Кавычки здесь очень важны, поскольку последняя фраза дает только общее представление о месте суперсимметрии в общей системе принципов симметрии природы.[59] Однако понимание принципа суперсимметрии является довольно сложной задачей, и мы сконцентрируем внимание на его основных следствиях, на том, согласуются ли законы природы с этим принципом. Этот вопрос гораздо легче поддается объяснению.

В начале 1970-х гг. физики пришли к выводу, что если Вселенная является суперсимметричной, частицы природы должны входить в набор наблюдаемых частиц парами, при этом спин частиц, образующих пару, должен отличаться на 1/2. Такие пары частиц — независимо от того, считаются ли они точечными (как в стандартной модели) или крошечными колеблющимися петлями — называются суперпартнерами. Поскольку частицы вещества имеют спин 1/2, а некоторые из частиц, передающих взаимодействие — спин 1, суперсимметрия приводит к выводу о наличии пар, о партнерстве частиц вещества и частиц, передающих взаимодействие. Сам по себе этот вывод выглядит весьма привлекательно с точки зрения объединения частиц в одну теорию. Проблема кроется в деталях.

К середине 1970-х гг., когда физики искали способ, который позволил бы включить суперсимметрию в стандартную модель, они обнаружили, что ни одна из известных частиц, перечисленных в табл. 1.1 и 1.2, не может быть суперпартнером для другой. Как показал тщательный теоретический анализ, если Вселенная включает принцип суперсимметрии, то каждой известной частице должна соответствовать еще не открытая частица-суперпартнер, спин которой на половину меньше, чем спин ее известного партнера. Так, партнер электрона должен иметь спин 0; эта гипотетическая частица получила название сэлектрона (сокращение от термина суперсимметричный электрон). То же самое справедливо и для других частиц вещества. Например, имеющие спин 0 гипотетические суперпартнеры нейтрино и кварков получили название снейтрино и скварков. Аналогично частицы, передающие взаимодействия, должны иметь суперпартнеров со спином 1/2. Для фотонов это будут фотино, для глюонов — глюино, для W-бозонов и Z-бозонов — вино и зино.

Таким образом, при более внимательном изучении суперсимметрия оказалась чрезвычайно неэкономичным понятием: она требовала большого количества дополнительных частиц, дублировавших список фундаментальных компонентов. Поскольку ни одна из частиц-суперпартнеров не была обнаружена, вы можете довольствоваться приведенным в главе 1 замечанием Раби по поводу открытия мюона, немного усилив его звучание: «Никто не заказывал суперсимметрию», и, без долгих рассуждений, отказаться от этого принципа симметрии. Существуют, однако, три причины, по которым многие физики твердо убеждены, что такой скоропалительный отказ от суперсимметрии был бы преждевременным. Обсудим эти причины.

Доводы в пользу суперсимметрии — до появления теории струн

Во-первых, с чисто эстетических позиций, физики не могли примириться с тем, что природа реализовала почти все, но не все математически возможные виды симметрии. Конечно, нельзя исключать возможность того, что симметрия реализуется не полностью, но это было бы так обидно. Это было бы похоже на то, как если бы Бах, написав многоголосные переплетающиеся партии, встроенные в гениальную картину музыкальной симметрии, забыл про финал, расставляющий все по своим местам.

Во-вторых, даже в стандартной модели, в теории, которая игнорирует гравитацию, многочисленные технические трудности, связанные с квантовыми эффектами, безболезненно разрешаются при использовании суперсимметрии. Основная проблема состоит в том, что каждый отдельный вид частиц вносит свой собственный вклад в микроскопический квантовый хаос. Исследуя глубины этого хаоса, физики обнаружили, что некоторые процессы, связанные со взаимодействием частиц, можно описать непротиворечивым образом только при очень точной настройке параметров стандартной модели, с точностью, превышающей 10?15, для нейтрализации наиболее разрушительных квантовых эффектов. Для сравнения: такая точность необходима для того, чтобы пуля, выпущенная из воображаемого сверхмощного ружья, попала в цель на Луне с отклонением, не превышающим размеры амебы. Хотя стандартная модель допускает регулировку параметров с такой точностью, многие физики испытывают сильное недоверие к теории, которая устроена настолько деликатно, что разваливается, если параметр, от которого она зависит, изменяется на единицу в пятнадцатом разряде после запятой.[60]

Суперсимметрия радикальным образом изменяет эту ситуацию, поскольку бозоны — частицы, имеющие целочисленный спин (получившие свое название в честь индийского физика Сатьендры Бозе), и фермионы — частицы, спин которых равен половине целого (нечетного) числа (названные в честь итальянского физика Энрико Ферми), имеют тенденцию вносить такие вклады в квантовый хаос, которые взаимно сокращаются. Вклады как будто находятся на противоположных концах коромысла: когда вклад бозонов в квантовые флуктуации положителен, вклад фермионов отрицателен, и наоборот. Поскольку суперсимметрия гарантирует, что бозоны и фермионы существуют парами, происходит изначальное сокращение, которое существенно уменьшает самые интенсивные квантовые флуктуации. В результате непротиворечивость суперсимметричной стандартной модели, в которую включены все частицы-суперпартнеры, перестает зависеть от подозрительно тонкой регулировки значений параметров обычной стандартной модели. Хотя этот момент кажется сугубо техническим, он делает суперсимметрию очень привлекательной в глазах многих специалистов по физике элементарных частиц.

Третье косвенное доказательство в пользу суперсимметрии связано с понятием великого объединения. Одно из самых загадочных свойств четырех фундаментальных взаимодействий природы состоит в огромных различиях интенсивности этих взаимодействий. Интенсивность электромагнитных сил не превышает одного процента от интенсивности сильного взаимодействия. Слабое взаимодействие примерно в тысячу раз слабее электромагнитного, а интенсивность гравитационных сил слабее еще в несколько сотен миллионов миллиардов миллиардов миллиардов (10?35) раз. Следуя удостоенной Нобелевской премии пионерской работе Глэшоу, Салама и Вайнберга, установившей глубокую связь между электромагнитным и слабым взаимодействием (см. главу 5), Глэшоу и его коллега по Гарвардскому университету Говард Джорджи предположили, что подобную связь можно протянуть и к сильному взаимодействию. Их работа, предлагавшая «великое объединение» трех из четырех взаимодействий, имела одно существенное отличие от электрослабой теории. Электромагнитное и слабое взаимодействия выкристаллизовались из более симметричного состояния, когда температура Вселенной упала примерно до миллиона миллиардов градусов выше абсолютного нуля (1015 К). Джорджи и Глэшоу показали, что объединение с сильным взаимодействием становится очевидным только при

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ОБРАНЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату