один линляндец сможет заглянуть внутрь тела другого.

Используя это второе измерение, врачи смогут оперировать ваше тело, получая доступ непосредственно к вашим открытым внутренностям. Чудеса! Со временем, несомненно, у линляндцев разовьется покров, подобный кожному, защищающий вновь открывшиеся внутренности их тел от контакта с внешним миром. Более того, они несомненно эволюционируют в существ, имеющих не только длину, но и ширину: они станут плоскими существами, скользящими по двумерной вселенной Садового шланга, как показано на рис. 8.6.

Рис. 8.6. Плоские двумерные существа, живущие во вселенной Садового шланга.

Если циклическое измерение станет очень большим, эта двумерная вселенная начнет очень походить на Флатляндию Эббота — воображаемый двумерный мир, который Эббот наделил богатой культурой и даже кастовой системой, основанной на геометрической форме тел обитателей. Если в Линляндии трудно представить себе что-либо интересное — там просто нет места для этого, — то жизнь на Садовом шланге переполнена возможностями. Эволюция от одного к двум наблюдаемым протяженным пространственным измерениям очень радикальна.

А теперь как рефрен: почему на этом надо остановиться? Двумерная вселенная сама может иметь свернутое измерение и, следовательно, втайне от нас быть трехмерной. Мы можем проиллюстрировать это рис. 8.4, представив, что существует только два протяженных пространственных измерения (хотя при первом описании этого рисунка мы считали, что плоская сетка представляет три протяженных измерения). Если циклическое измерение развернется, двумерные существа увидят, что они оказались в совершенно ином мире, в котором движения не ограничены направлениями влево-вправо и вперед-назад. Теперь эти существа могут двигаться и в третьем измерении — в направлении «вверх-вниз» вдоль круга. На самом деле, если третье измерение станет достаточно большим, это будет наша трехмерная Вселенная. В настоящее время мы не знаем, простираются ли наши пространственные измерения до бесконечности, или они замыкаются на гигантскую окружность, недоступную в самые мощные телескопы. Если циклическое измерение на рис. 8.4 станет достаточно большим — миллиарды световых лет в поперечнике — этот рисунок вполне может быть изображением нашего мира.

И снова рефрен: почему на этом надо остановиться? Это приведет нас к представлениям Калуцы и Клейна: наша трехмерная Вселенная может иметь свернутое, четвертое пространственное измерение, о котором никто не подозревал. Если эта поразительная возможность или ее обобщение на случай многих свернутых измерений (мы вскоре рассмотрим его) истинны, и если эти свернутые измерения раскроются до макроскопического размера, то, как показывают приведенные выше примеры с меньшим числом измерений, жизнь в том виде, в котором мы ее знаем, изменится очень сильно.

Удивительно, однако, что даже если дополнительные измерения всегда будут оставаться в свернутом состоянии и будут малы, сам факт их существования ведет к глубоким последствиям.

Объединение в высших измерениях

Хотя высказанное Калуцей в 1919 г. предположение о том, что наша Вселенная может иметь недоступные нам непосредственно пространственные измерения, замечательно само по себе, его популярность связана с иными обстоятельствами. Эйнштейн сформулировал общую теорию относительности для привычного случая Вселенной с тремя пространственными и одним временным измерением. Однако математический формализм его теории можно непосредственно обобщить и выписать аналогичные уравнения для Вселенной с дополнительными пространственными измерениями. Калуца выполнил математический анализ и в явном виде выписал новые уравнения при «умеренном» предположении об одном дополнительном пространственном измерении.

Он обнаружил, что в этой пересмотренной формулировке уравнения, относящиеся к трем обычным измерениям, по существу совпадают с уравнениями Эйнштейна. Но благодаря тому, что он включил дополнительное пространственное измерение, Калуца, как и следовало ожидать, получил новые уравнения в дополнение к тем, которые первоначально вывел Эйнштейн. Изучив эти дополнительные уравнения, связанные с новым измерением, Калуца обнаружил нечто удивительное. Оказалось, что дополнительные уравнения представляют собой не что иное, как полученные Максвеллом в 1860-х гг. уравнения, описывающие электромагнитное взаимодействие! Добавив еще одно пространственное измерение, Калуца объединил теорию гравитации Эйнштейна с максвелловской теорией электромагнитного поля.

До появления гипотезы Калуцы гравитация и электромагнетизм рассматривались как два отдельных вида взаимодействия; ничто не указывало на то, что между ними может существовать какая-либо связь. Однако, дерзнув предположить, что наша Вселенная имеет дополнительное пространственное измерение, Калуца обнаружил, что в действительности они глубоко связаны. Его теория утверждает, что и гравитация, и магнетизм связаны с волнами в структуре пространства. Гравитация переносится волнами, распространяющимися в нашем обычном трехмерном пространстве, тогда как электромагнетизм переносится волнами, использующими новое, свернутое измерение.

Калуца послал свою статью Эйнштейну. Вначале Эйнштейн ей очень заинтересовался. 21 апреля 1919 г. он написал Калуце ответное письмо, в котором говорил, что ему никогда не приходило в голову, что подобное объединение может быть достигнуто «с помощью пятимерного [четыре пространственных измерения и одно временное] цилиндрического мира». Он также писал, что «на первый взгляд ваша идея нравится мне необычайно».[71] Однако спустя неделю Эйнштейн написал Калуце еще одно письмо, которое уже содержало изрядную долю скептицизма: «Я внимательно прочитал вашу статью и нахожу ее очень интересной. Я не вижу ничего, что позволило бы отрицать такую возможность. С другой стороны, я должен признать, что приведенные аргументы не выглядят достаточно убедительными».[72] Спустя более чем два года, 14 октября 1921 г., когда у Эйнштейна было достаточно времени, чтобы более полно усвоить новаторский подход, предложенный Калуцей, он снова пишет ему: «Я еще раз обдумал совет воздержаться от публикации вашей идеи об объединении гравитации и электромагнетизма, который я дал вам два года назад... Если вы хотите, я бы мог представить вашу статью в академии».[72] Так, с запозданием, Калуца получил одобрение мастера.

Хотя идея была прекрасной, последующий детальный анализ гипотезы Калуцы, дополненной Клейном, показал, что она находится в серьезном противоречии с экспериментальными данными. Простейшие попытки включить в теорию электрон приводили к предсказанию отношения его массы к заряду, которое существенно отличалось от измеренных значений. Поскольку не было видно способов разрешить эту проблему, многие физики потеряли интерес к идее Калуцы. Эйнштейн и ряд других ученых продолжали исследовать возможности использования дополнительных измерений, но тем не менее это направление вскоре оказалось на периферии теоретической физики.

В действительности, идея Калуцы намного опередила свое время. 1920-е гг. ознаменовались началом бурного роста теоретических и экспериментальных исследований, посвященных изучению основных законов микромира. Теоретики были поглощены разработкой структуры квантовой механики и квантовой теории поля. Экспериментаторы были заняты детальным изучением свойств атомов и поиском новых элементарных компонентов мироздания. Теория направляла эксперимент, а эксперимент подправлял теорию — так продолжалось около полувека, и, в конечном счете, это привело к разработке стандартной модели. Неудивительно, что в это бурное и продуктивное время предположения по поводу дополнительных измерений были на обочине исследований. В эпоху, когда физики открывали мощные методы квантовой механики, дававшие предсказания, которые могли быть проверены экспериментально, изучение возможности того, что Вселенная может иметь совершенно иные свойства на расстояниях, которые слишком малы, чтобы их можно было исследовать даже с помощью самой современной техники, вызывало мало интереса.

Но, рано или поздно, из машины выходит весь пар. К концу 1960-х — началу 1970-х гг. были разработаны теоретические основы стандартной модели. К концу 1970-х — началу 1980-х гг. многие ее

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату