интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближенные схемы. Вспомните главу 6 и пример с
Итак, где же мы находимся? Да, мы столкнулись с проблемой отсутствия фундаментального критерия выбора конкретного многообразия Калаби-Яу. Да, у нас нет теоретических средств, необходимых для вывода наблюдаемых характеристик, соответствующих такому выбору. Но мы можем спросить, а есть ли в каталоге пространств Калаби-Яу какие-либо элементы, которые дают картину мира, в основном согласующуюся с наблюдениями? Ответ на этот вопрос звучит достаточно обнадеживающе. Хотя большинство элементов каталога дают картину, которая существенно отличается от нашего мира (в ней, помимо всего прочего, другое число семейств элементарных частиц, а также иные типы и константы фундаментальных взаимодействий), небольшое число многообразий дает физическую картину, которая на качественном уровне
Для современного уровня понимания это лучшее, на что мы могли рассчитывать. Если бы многие многообразия Калаби-Яу давали примерное совпадение с экспериментальными данными, связь между конкретным выбором и наблюдаемой физической картиной была бы менее убедительной. Когда предъявляемым требованиям соответствуют многие варианты, ни один из них нельзя выделить даже с привлечением экспериментальных данных. С другой стороны, если бы ни одно многообразие Калаби-Яу не давало ничего даже отдаленно похожего на наблюдаемую физическую картину, мы могли бы сказать, что теория струн, конечно, прекрасная теоретическая структура, но она, по-видимому, не имеет отношения к нашему миру. То, что даже при наших весьма скромных современных способностях определения детальных физических следствий удалось найти небольшое число пригодных пространств Калаби-Яу, является чрезвычайно обнадеживающим фактом.
Объяснение свойств элементарных частиц и частиц-переносчиков фундаментальных взаимодействий было бы одним из великих, если не
Препятствия на пути теоретических исследований, которые не позволяют в настоящее время использовать теорию струн для получения детальных предсказаний, вынуждают нас к поиску не конкретных, а
Как мы уже отмечали, фундаментальное свойство теории струн состоит в том, что она обладает высокой симметрией, объединяя в себе не только наши интуитивные принципы симметрии, но и максимальное, с точки зрения математики, расширение этих принципов — суперсимметрию. Как говорилось в главе 7, это означает, что моды колебаний струны реализуются парами суперпартнеров, спин которых отличается на 1/2. Если теория струн верна, то некоторые из колебаний струн будут соответствовать известным частицам. Парность, связанная с суперсимметрией, позволяет теории струн сделать
До настоящего времени никому не удавалось наблюдать суперпартнеров элементарных частиц. Это может означать, что они не существуют, и теория струн неверна. Однако по мнению многих специалистов по физике элементарных частиц это связано с тем, что суперпартнеры являются очень тяжелыми и поэтому не могут быть обнаружены на тех экспериментальных установках, которыми мы располагаем сегодня. В настоящее время физики сооружают гигантский ускоритель вблизи г. Женева в Швейцарии, получивший название Большого адронного коллайдера[93]. Есть надежда, что мощность этой установки будет достаточна для открытия частиц-суперпартнеров. Ускоритель должен вступить в действие к 2010 г., и вскоре после этого суперсимметрия может получить экспериментальное подтверждение. Как сказал Шварц: «До открытия суперсимметрии осталось ждать не так уж долго. И когда это случится, это будет волнующее событие».[94]
Есть, однако, два момента, о которых следует помнить. Даже если частицы-суперпартнеры будут обнаружены, один этот факт недостаточен для того, чтобы утверждать истинность теории струн. Как мы видели выше, хотя суперсимметрия была открыта в ходе работ над теорией струн, она может быть успешно включена в теории, основанные на точечной модели частиц и, следовательно, не является уникальным признаком теории струн. И обратно, если даже частицы-суперпартнеры не будут обнаружены с помощью Большого адронного коллайдера, один этот факт еще не позволяет отрицать теорию струн, поскольку он может быть связан с тем, что суперпартнеры слишком тяжелы, чтобы их можно было обнаружить на такой установке.
Тем не менее, если частицы-суперпартнеры будут обнаружены, несомненно, это будет сильное и вдохновляющее свидетельство в пользу теории струн.
Другое возможное экспериментальное подтверждение теории струн, связанное с электрическим зарядом, является не столь фундаментальным, как существование суперпартнеров, но столь же удивительным. Ассортимент значений электрического заряда, который могут нести частицы в стандартной модели, очень ограничен: кварки и антикварки могут иметь (в единицах заряда электрона) положительный и отрицательный заряд, равный 1/3 и 2/3, а остальные частицы — 0, +1 и ?1. Комбинации этих частиц образуют все известное вещество Вселенной. Однако теория струн допускает существование мод резонансных колебаний, которым соответствуют частицы с существенно иным электрическим зарядом. Например, электрический заряд частиц может принимать ряд экзотических дробных значений, таких как 1/5, 1/11, 1/13 или 1/53. Эти необычные заряды могут возникать в том случае, когда свернутые измерения обладают определенным геометрическим свойством — наличием таких отверстий, что намотанные вокруг них струны могут распутаться, только сделав определенное число витков. [95] Детали этого явления не столь важны, заметим только, что число оборотов, которое должна сделать струна, чтобы распутаться, появляется в допустимых модах колебаний в знаменателе дробного значения электрического заряда.
Одни многообразия Калаби-Яу обладают этим геометрическим свойством, другие — нет, поэтому возможность дробных электрических зарядов не является такой фундаментальной, как существование частиц-суперпартнеров. С другой стороны, в то время как предсказание суперпартнеров не является эксклюзивной особенностью теории струн, десятилетия экспериментальных исследований не дали никакого повода ожидать, что столь экзотические электрические заряды могут существовать в какой-либо теории, основанной на точечной модели частиц. Конечно, их можно ввести в такие теории принудительно, но они