> p1*p2;

(a1x³ + b1x² + c1x + d1) + (a2x² + b2х + с2)

> collect(%,х);

a1a2x5 + (b1а2 + а1b2)х4 + (c1a2 + b1b2 + а1с2)х3 + (d1a2 + c1b2 + b1с2)х2 + (d1b2 + c1c2)x + d1c2

> p1/p2;

> expand(%,х);

В целом надо отметить, что аппарат действий с полиномами в Maple хорошо развит и позволяет выполнять с ними практически любые математические операции. В частности, можно вычислять производные от полиномов и интегралы, у которых полиномы являются подынтегральными функциями:

> diff(p1, х);

3а1х² + 2b1х + c1

> diff(p1, x$2);

6a1x + 2b1

> Int(p1,x)=int(p1,x);

> Int(p1,х=0..1)=int(p1,х=0..1);

5.3.9. Операции над степенными многочленами с отрицательными степенями

Хотя в подавляющем большинстве случаев используются степенные многочлены (полиномы) с положительными степенями, Maple не накладывает особых ограничений и на многочлены с отрицательными степенями. Например, можно задать такой степенной многочлен:

> pp:=а*х^(-2)+b*x^(-1)+c*x+d+e*x^2+f*х^3;

Нетрудно показать, что с ним можно выполнять различные операции:

> рр+рр;

> рр-рр;

0

> pp^2

> simplify(%);

> Diff(pp, x)=diff(pp, x)

> Int(pp,x);

> int(рр,х);

Хотя Maple и не накладывает ограничений на применение степенных многочленов (полиномов) с отрицательными степенями свойства таких полиномов заметно отличаются от свойств полиномов с положительными степенями, поэтому при применении первых надо проявлять известную осторожность.

5.4. Работа с ортогональными полиномами

5.4.1. Состав пакета orthopoly

Ортогональные многочлены (полиномы) находят самое широкое применение в различных математических расчетах. В частности они широко используются в алгоритмах интерполяции, экстраполяции и аппроксимации различных функциональных зависимостей, где свойство ортогональности обеспечивает оценку погрешности приближения и сведение ее к минимуму — вплоть до нуля.

В пакете orthopoly системы Maple 9.5 задано 6 функций:

> with(orthopoly);

[G, Н, L, Р, Т, U]

Однобуквенные имена этих функций отождествляются с первой буквой в наименовании ортогональных полиномов. Вопреки принятым в Maple правилам, большие буквы в названиях этих полиномов не указывают на инертность данных функций — все они являются немедленно вычисляемыми. В данном разделе функции этого пакета будут полностью описаны.

Отметим определения указанных функций:

G(n,a,x) — полином Гегенбауэра (из семейства ультрасферических полиномов);

H(n,x) — полином Эрмита;

L(n,x) — полином Лагерра;

L(n,a,x) — обобщенный полином Лагерра;

P(n,x) — полином Лежандра;

P(n,a,b,x) — полином Якоби;

T(n,x) — обобщенный полином Чебышева первого рода;

U(n,x) — обобщенный полином Чебышева второго рода.

Свойства ортогональных многочленов хорошо известны. Все они характеризуются целочисленным порядком n, аргументом х и иногда дополнительными параметрами а и b. Существуют простые рекуррентные формулы, позволяющие найти полином n-го порядка по значению полинома (n-1)-го порядка. Эти формулы и используются для вычисления полиномов высшего порядка.

5.4.2. Вычисление ортогональных полиномов

Ниже представлены примеры вычисления ортогональных полиномов (файл orthpol):

> G(0, 1, х);

1

> G(1, 1, х);

> G(1, 1, 5);

10

> Н(3, х);

8x³ - 12х
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату