Классический результат теории аппроксимации заключается в том, что минимакс как наилучшая аппроксимация рациональной функции степени (m, n) достигается, когда кривая ошибки имеет m+n+2 равных по величине колебаний. Кривая ошибки аппроксимации Чебышева-Паде имеет нужное число колебаний, но эта кривая должна быть выровнена (по амплитуде выбросов кривой ошибки) с тем, чтобы обеспечить наилучшее минимаксное приближение. Эта задача решается с помощью функции minimax:

> MinimaxApprox := minimax(F, 0..4, [4,4], 1, 'maxerror');

MinimaxApprox :=x→ (0.174933018974 + (0.0833009600964 + (-0.02019330447644 + (0.00368158710678 - 0.000157698045886x)x)x)x)/(0.349866448284 + (0.031945251383 + (0.0622933780130) + (-0.0011478847868 + 0.0033634353802x)x)x)x)

Максимальная ошибка в аппроксимации MinimaxApprox дается значением переменной maxerror. Заметим, что мы, наконец, достигли нашей цели получения аппроксимации с ошибкой меньшей, чем 1*10-6:

> maxMinimaxError := maxerror;

maxMinimaxError := 0.585028048949 10-6

Построим график погрешности для данного типа аппроксимации:

> plot(F - MinimaxApprox,0..4,color=black);

График ошибки, представленный на рис. 5.28 показывает равные по амплитуде колебания.

Рис. 5.28. График ошибки при минимаксной аппроксимации

Таким образом, мы блестяще добились успеха в снижении погрешности до требуемого и довольно жесткого уровня. Если бы мы задались целью получить только четыре или пять точных знаков аппроксимации, что в целом ряде случаев вполне приемлемо, то могли бы получить нужный результат гораздо раньше. Нам остается оптимизировать полученную аппроксимацию по минимуму арифметических операций и проверить реальный выигрыш по времени вычислений.

5.10.7. Эффективная оценка рациональных функций

Полиномы числителя и знаменателя в минимаксной аппроксимации уже выражены в форме Горнера (то есть в форме вложенного умножения). Оценка полиномом степени n в форме Горнера при n умножениях и n суммированиях это наиболее эффективная схема оценки для полинома в общей форме. Однако, для рациональной функции степени (m, n) мы можем делать кое-что даже лучше, чем просто представить выражения числителя и знаменателя в форме Горнера. Так, мы можем нормализовать рациональную функцию так, что полином знаменателя со старшим коэффициентом будет равным 1. Мы можем также заметить, что вычисление рациональной функции степени (m, n) в форме Горнера требует выполнения всего m+n сложений, m+n-1 умножений и 1 деления. Другими словами, общий индекс действия есть

m + n операций умножения/деления,

m + n операций сложения/вычитания.

Вычисление рациональной функции можно значительно сократить и далее, преобразуя ее в непрерывную (цепную) дробь. Действительно, рациональная функция степени (m, n) может быть вычислена, используя только

max(m, n) операций умножения/деления,

m + n операций сложения/вычитания.

Например, если m = n, тогда эта новая схема требует выполнения только половины числа действий умножения/деления по сравнению с предшествующим методом. Для рациональной функции MinimaxApprox, вычисление в форме, выраженной выше, сводится к 9 действиям умножения/деления и 8 действиям сложения/вычитания. Число операций умножения/деления можно сократить до 8, нормализуя знаменатель к форме monic. Мы можем теперь вычислить непрерывную (цепную) дробь для той же самой рациональной функции. Вычисление по этой схеме, как это можно видеть из вывода Maple, сводятся только 4 действиям деления и 8 действиям сложения/вычитания:

> MinimaxApprox := confracform(MinimaxApprox):

> lprint(MinimaxApprox(x));

-.468860043555e-1 + 1.07858988373/

(x+4.41994160718+16.1901836591/(x+4.29118998064+70.1943521765/(x- 10.2912531257+4.77538954280/(x+1.23883810079))))

5.10.8. Сравнение времен вычислений

Теперь определим время, необходимое для вычисления функции f(x) в 1000 точек, используя первоначальное интегральное определение, и сравним его с временем, требующимся для схемы MinimaxApprox в виде непрерывной дроби. Сделаем это для системы Maple 8. Так как наше приближение будет давать только 6 точных цифр, мы также потребуем 6 точных цифр и от интегрального представления функции:

> Digits := 6: st := time():

> seq( evalf(f(i/250.0) ) , i = 1..1000 ):

> oldtime := time() - st;

oldtime := 4.075

В процессе вычислений с использованием представления рациональной функции в виде непрерывной дроби иногда требуется внести несколько дополнительных цифр точности для страховки. В данном случае достаточно внести две дополнительные цифры. Итак, новое время вычислений:

> Digits := 6: st := time():

> seq( MinimaxApprox(i/250.0), i = 1..1000 ):

> newtime := time() - st;

newtime := 0.342

Ускорение вычисления при аппроксимации есть:

> SpeedUp := oldtime/newtime;

SpeedUp := 11.915205

Мы видим, что процедура вычислений, основанная на MinimaxApprox, выполняется почти в 12 раз быстрее процедуры с использованием исходного интегрального определения. Это серьезный успех, полностью оправдывающий время, потерянное на предварительные эксперименты по аппроксимации и ее оптимизации!

Заметим, что этот результат относится только к конкретному ПК и может сильно меняться при прогонке этого примера на других. Так, читатель, знакомый с учебным курсом автора по системе Maple 7 [36] обнаружит, что там в этом примере результаты были иные и куда более ошеломляющие:

oldtime := 81.805 newtime := .694 SpeedUp := 117.87464

В чем дело? А дело в том, что более ранние результаты были получены в среде Maple 7 на компьютере с процессором Pentium II с частотой 400 МГц. А новые результаты получены уже на компьютере с процессором Pentium 4 с частотой 2,6 ГГц и с системой Maple 9.5.

5.10.9. Преобразование в код ФОРТРАНа или С

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату