Для расширенной поддержки интегральных преобразований служит пакет inttrans

Это один из пакетов, наиболее важных для общематематических и научно-технических приложений. Он вызывается командой

> with(inttrans);

[addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable]

и содержит небольшой набор функций. Однако эти функции охватывают такие практические важные области математики, как ряды Фурье, прямые и обратные преобразования Лапласа и Фурье и ряд других интегральных преобразований. Ниже они обсуждены более подробно.

5.11.4. Прямое и обратное преобразование Фурье

Прямое преобразование Фурье преобразует функцию времени f(t) в функцию частот F(w) и заключается в вычислении следующей интегральной функции:

Оно в аналитическом виде реализуется следующей функцией пакета интегральных преобразований inttrans:

fourier(expr, t, w)

Здесь expr — выражение (уравнение или множество), t — переменная, от которой зависит expr, и w — переменная, относительно которой записывается результирующая функция.

Обратное преобразование Фурье задается вычислением интеграла

Оно фактически переводит представление сигнала из частотной области во временную. Благодаря этому преобразования Фурье удобны для анализа прохождения воздействий (сигналов) si(t) через устройства (цепи), заданные их частотной характеристикой K(w):

si(t)→fourier→s(w)→s(w)∙K(w)→invfourier→so (t).

Здесь si(t) и so(t) — временные зависимости соответственно входного и выходного сигналов.

Определение (визуализация) преобразований Фурье и примеры их осуществления представлены ниже:

> restart:with(inttrans): assume(lambda>0,а>0):

> convert(fourier(f(t), t, s), int);

> convert(invfourier(f(t),t,s),int);

> fourier(sin(t),t,w);

-I π Dirac(w - 1) + I π Dirac(w + 1)

> invfourier(%,w,t);

sin(t)

> fourier(1-exp(-a*t),t,w);

2 π Dirac(w) - fourier(e(-at),t,w)

> invfourier(%,w,t);

1 - e(-at)

> fourier(ln(1/sqrt(1+x^2)),x,y);

> fourier(BesselJ(n,x),x,y);

5.11.5. Вычисление косинусного и синусного интегралов Фурье

Разложение функции f(t) в ряд Фурье требует вычисления интегралов следующего вида:

Они получили название косинусного и синусного интегралов Фурье и фактически задают вычисление коэффициентов ряда Фурье, в который может быть разложена функция f(t).

Для вычисления этих интегралов в пакете используются следующие функции:

fouriercos(expr,t,s)

fouriersin(expr,t,s)

Поскольку формат задания этих функций вполне очевиден, ограничимся примерами визуализации сути этих функций и примерами их применения:

> convert(fouriercos(f(t),t,s),int);

> convert(fouriersin(f(t),t,s),int);

> fouriercos(5*t,t,s);

> fouriersin(5*t,t,s);

> fouriercos(exp(-t),t,s);

> fouriercos(arccos(х) * Heaviside(1-х), х, y);

> fouriersin(arcsin(x) * Heaviside(1-х), x, y);

Нетрудно заметить, что эти преобразования нередко порождают специальные математические функции. Много примеров на преобразования Фурье содержатся в файле демонстрационных примеров fourier.mws.

5.11.6. Прямое и обратное преобразование Лапласа

Преобразования Лапласа — одни из самых часто применяемых интегральных преобразований. Они широко применяются в электрорадиотехнике и часто используются для решения линейных дифференциальных уравнений.

Прямое преобразование Лапласа заключается в переводе некоторой функции времени f(t) в операторную форму F(p). Это преобразование означает вычисление интеграла

Для осуществления прямого преобразования Лапласа служит функция

laplace(expr,t,р)

Здесь expr — преобразуемое выражение, t — переменная, относительно которой записано expr, и p — переменная, относительно которой записывается результат преобразования.

Обратное преобразование Лапласа означает переход от функции F(p) к функции f(t) с помощью формулы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату