> remove(type,f,name);

x, ln(y), ln(ах)}

> f:=2*ln(x)*(y+1);

f:= 2 ln(x)(y + 1)

> c:=remove(has,f,x);

с:= 2y + 2

> f/c;

> select(has,f,x);

ln(x)

Maple имеет также оператор селекции А[expr]. Его действие поясняют следующие примеры (файл sortsel):

> restart;

> S:=[a+b*c,х^2,с,1,2,3];

S:=[a+ bc, x²,c, 1, 2, 3]

> S[1];

a + bc

> S[1..2];

[a+bc, x²]

> S[-2..-1];

[2, 3]

> S[3..3];

[c]

> S[3..2];

[]

> S[4..6];

[1, 2, 3]

> X:=S[];

X := a + bc, x², c, 1, 2, 3

> X[1];

a + bc

> X[1..2];

a + bc, x²

> X[-2..-1];

2,3

> S:={a,b,c};

S:={a, b, c}

> S[1];

a

> S[3];

c

> S[1..2];

{a, b}

> S[-2..-1];

{b, c}

3.7. Символьные преобразования выражений

3.7.1. Упрощение выражений — simplify

Функция simplify — одна из самых мощных в системах символьной математики. Она предназначена для упрощения математических выражений. «Все гениальное просто» — любим мы повторять, хотя это далеко не всегда так. Тем не менее, стремление представить многие математические выражения в наиболее простом виде поощряется в большинстве вычислений и нередко составляет их цель.

В системе Maple функция упрощения используется в следующем виде:

• simplify(expr) — возвращает упрощенное выражение expr или повторяет его, если упрощение в рамках правил Maple невозможно;

• simplify(expr, n1, n2, …) — возвращает упрощенное выражение expr с учетом параметров с именами n1, n2, … (в том числе заданных списком или множеством);

• simplify(expr,assume=prop) — возвращает упрощенное выражение expr с учетом всех условий, представленных равенством или списком равенств.

Функция simplify — многоцелевая. Она обеспечивает упрощение математических выражений, выполняя следующие типовые действия (для простоты обозначим их как ->):

• комбинируя цифровые подвыражения (3*х*5->15*х, 10*x/5->2*x);

• приводя подобные множители в произведениях (х^3*а*х->а*х^4);

• приводя подобные члены в суммах (5*х+2+3*х->8*х+2);

• используя тождества, содержащие ноль (а+0->а, х-0->х);

• используя тождества, содержащие единицу (1*х->х);

• распределяя целочисленные показатели степени в произведениях ((3*х*у^3)^2- >9*х^2*у^6);

• сокращая expr на наибольший общий полиномиальный или иной множитель;

• понижая степень полиномов там, где это возможно;

• используя преобразования, способные упростить выражения.

Несмотря на свою гибкость, функция simplify не всегда способна выполнить возможные упрощения. В этом случае ей надо подсказать, в какой области ищутся упрощения и где можно найти соответствующие упрощающие преобразования. С этой целью в функцию simplify можно включать дополнительные параметры.

В качестве параметров могут задаваться имена специальных математических функций и указания на область действия упрощений: BesselI, BesselJ, BesselK, BesselY, Ei, GAMMA, RootOf, LambertW, dilog, exp, ln, sqrt, polylog, pg, pochhammer, trig (для всех тригонометрических функций), hypergeom, radical, power и atsign (для операторов).

Полезен также параметр symbolic, задающий формальные символьные преобразования для многозначных функций, например, таких как квадратный корень (примеры из файла simplify):

> g:=sqrt(х^2);

> simplify(g);

csgn(x)x

> simplify(g,assume=real);

|x|

> simplify(g,assume=positive);

x

> simplify(g,symbolic);

x
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату