> s:=series(f,x,5);

s:= -x - x3 -x4 + O(x5)

> convert(s,polynom);# Удаление члена ряда, описывающего погрешность

-х - х3 - х4

Из этих примеров (их список читатель может пополнить самостоятельно) следует, что функция преобразования convert является одной из самых мощных функций Maple. С ее помощью можно получить множество различных форм одного и того же выражения.

3.5.8. Преобразование выражений

Еще одним мощным средством преобразования выражений является функция combine. Она обеспечивает объединение показателей степенных функций и преобразование тригонометрических и некоторых иных функций. Эта функция может записываться в трех формах:

combine(f)

combine(f, n)

combine(f, n, opt1, opt2,...)

Здесь f — любое выражение, множество или список выражений; n — имя, список или множество имен; opt1, opt2, … — имена параметров. Во втором аргументе можно использовать следующие функции:

@@  abs       arctan  conjugate ехр

ln  piecewise polylog power     product

Psi radical   range   signum    trig

Примеры применения функции combine представлены ниже (файл expr1):

> combine(ехр(2*х)^2,ехр);

е(4x)

> combine(2*sin(х)^2+2*cos(х)^2);

2

> combine(sin(х)*cos(х));

½sin(2x)

> combine(Int(х,x=a..b)-Int(х^2,x=a..b));

Эти примеры далеко не исчерпывают возможности функции combine в преобразовании выражений. Рекомендуется обзорно просмотреть примеры применения функции combine с разными параметрами, приведенные в справочной системе Maple.

3.5.9. Контроль за типами объектов

Выражения и их части в Maple рассматриваются как объекты. В ходе манипуляций с ними важное значение имеет контроль за типом объектов. Одной из основных функций, обеспечивающих такой контроль, является функция whattype(object), возвращающая тип объекта, например string, integer, float, fraction, function и т.д. Могут также возвращаться данные об операторах. Примеры применения этой функции даны ниже (файл control):

> whattype(2+3);

integer

> whattype(Pi);

symbol

> whattype(123./5);

float

> whattype(1/3);

fraction

> whattype(sin(x));

function

> whattype([1, 2, 3, a, b, c]);

list

> whattype(a+b+c);

+

> whattype(a*b/c);

*

> whattype(a^b);

^

> whattype(1+2+3=4);

=

С помощью функции type(object,t) можно выяснить, относится ли указанный объект к соответствующему типу t, например:

> type(2+3,integer);

true

> type(sin(х),function);

true

> type(hello,string);

false

> type('hello',string);

true

> type(1/3,fraction);

true

При успешном соответствии типа объекта указанному (второй параметр), функция type возвращает логическое значение true, в противном случае — false.

Для более детального анализа объектов может использоваться функция hastype(expr, t), где expr — любое выражение и t — наименование типа подобъекта.

Эта функция возвращает логическое значение true, если подобъект указанного типа содержится в выражении expr. Примеры применения этой функции даны ниже (файл control):

> hastype(2+3,integer);

true

> hastype(2+3/4,integer);

false

> hastype(2*sin(x),function);

true

> hastype(a+b-c/d,`+`);

true

Еще одна функция — has(f,x) — возвращает логическое значение true, если подобъект х содержится в объекте f, и false в ином случае:

> has(2*sin(х),2);

true

> has(2*sin(x), `/`);

false
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату