выводу так и не пришла! Если цирюльник бреет сам себя, то нарушает правило, брея того, кто бреется сам. Если он сам себя не бреет, то он один из тех, кто сами не бреются, а поскольку он бреет всех этих людей, то должен брить и самого себя. Так что в любом случае — бреется он или не бреется — мы сталкиваемся с противоречием! И тут уже не отделаешься утверждением, что «это не может быть ни истинным, ни ложным», потому что должен же он либо бриться, либо не бриться!

— Кто должен либо бриться, либо не бриться? — уточнил Шалтай - Болтай.

— Как это кто? Цирюльник, конечно!

— Какой цирюльник? — снова спросил Шалтай-Болтай.

— Естественно, цирюльник из этой истории! — ответила Алиса несколько нетерпеливо.

— Вот как? — сказал Шалтай-Болтай. — А кто сказал, что эта история правдива?

Алиса призадумалась.

— Послушайте, — сказала она наконец, — нам ведь дано, что цирюльник именно такой, как описано в истории. Мы не можем опровергать заданные нам условия головоломки!

— Ах, не можем? — довольно язвительно заметил Шалтай-Болтай, — даже если так называемые заданные условия противоречат сами себе?

Для Алисы это было что-то новенькое.

— Проблема в том, — продолжал Шалтай-Болтай, — что такого цирюльника нет, никогда не было и никогда не будет. Такого цирюльника просто не может быть, потому что если бы он был, его существование противоречило бы самому себе.

Алису такое объяснение не слишком убедило.

— Ну смотри же, — досадливо поморщился Шалтай-Болтай, — допустим, я бы утверждал, что был на свете человек, рост которого шесть футов и рост которого не шесть футов — что бы ты на это сказала?

— Очевидно, что такого человека не было, — ответила Алиса.

— Хорошо! А допустим, я бы утверждал, что был на свете цирюльник, который брился и не брился — что бы ты на это сказала?

— Что такого цирюльника просто не было, — ответила Алиса.

— Но ведь это и есть цирюльник из твоей истории! Такой цирюльник не может бриться и не может не бриться. Следовательно, такого цирюльника не может быть. Вот тебе и логика!

Это окончательно убедило Алису.

— Есть одна похожая задача, которая поможет тебе лучше понять проблему с цирюльником, — продолжал Шалтай-Болтай. — В одном городке живут два цирюльника — назовем их Первый Цирюльник и Второй Цирюльник. Нам известно, что Первый Цирюльник бреет всех жителей городка, которые не бреются сами, но ничего не сказано о том, что он не бреет и других жителей тоже. Что до Второго Цирюльника, то он никогда не бреет жителей, которые бреются сами, но вовсе необязательно, что он бреет всех жителей, которые не бреются сами. При таких условиях мы вполне можем допустить существование и Первого Цирюльника, и Второго Цирюльника и никакого противоречия здесь не будет.

— Тогда в чем тут загвоздка? — спросила Алиса.

— А загвоздки тут две: бреется Первый Цирюльник сам или не бреется? И вторая: бреется Второй Цирюльник сам или не бреется?

Алиса погрузилась в размышления.

— Первый Цирюльник бреется сам, а Второй Цирюльник — нет, — заявила Алиса, весьма гордая собой.

— Хорошо! Очень хорошо! — вскричал Шалтай-Болтай. — А можешь объяснить, почему?

— Потому что, — уверенно заговорила Алиса, — если бы Первый Цирюльник не брился сам, то он был бы одним из тех, кто сам не бреется, но раз он всех таких людей бреет, то должен брить и себя. Это противоречие. Следовательно, он бреется. Что касается Второго Цирюльника, то если предположить, что он бреется, то ему пришлось бы брить кого-то, кто бреется сам, а по условиям задачи он этого никогда не делает. Следовательно, Второй Цирюльник не может бриться.

— Мои уроки не проходят для тебя даром, — удовлетворенно заметил Шалтай-Болтай. — Должен сказать, что тебе невероятно повезло с учителем!

Алиса даже не знала, как на это реагировать. Уроки логического мышления, которые преподнес ей Шалтай-Болтай, и вправду оказались чрезвычайно поучительны. Но при этом, подумала Алиса, он вовсе не прочь слегка прихвастнуть при каждом удобном случае!

— Вы сказали, это поможет лучше понять старую головоломку про цирюльника, — напомнила Алиса. — Какая связь между этими двумя головоломками?

— Молодец, что спросила, — ответил Шалтай-Болтай. — Видишь ли, может существовать цирюльник вроде Первого Цирюльника, и такой цирюльник должен бриться сам. Вполне мог бы быть на свете и цирюльник вроде Второго Цирюльника, только вот бриться такой цирюльник не мог. Но Первый Цирюльник и Второй Цирюльник не могут быть одним человеком! Тогда как в первоначальной головоломке у тебя был только один цирюльник, который сочетал в себе характеристики Первого Цирюльника и Второго Цирюльника, а это невозможно.

— Я поняла! — сказала Алиса, — это очень интересно!

— Вот тебе еще одна головоломка, — сказал Шалтай-Болтай, —только у этой есть совершенно определенный ответ. Ты знаешь задачку про «Клуб Сердец»?

— Нет, — ответила Алиса, — никогда раньше не слышала.

— Молодец, — неожиданно похвалил он, — ты правильно ответила на вопрос!

— На какой вопрос? — недоуменно спросила Алиса.

— Вопрос, который я тебе задал! Я спросил тебя, знаешь ли ты головоломку про «Клуб Сердец», и ты сказала, что никогда ее раньше не слышала. Так вот ты была права!

— Ну да, — сказала Алиса, — конечно, я была права, вот только откуда вы могли это знать?

— Оттуда, что я сам придумал эту головоломку и еще никому никогда ее не рассказывал, поэтому я точно знал, что ты права!

— А-а! — только и сказала на это Алиса. — Так что это за головоломка про «Клуб Сердец»?

— Жители одного городка, — начал Шалтай-Болтай, — объединились в различные клубы по интересам. Один из таких клубов называется «Клуб Сердец». Нам известны следующие факты:

1. Каждая женщина в городке, если только она не состоит членом всех клубов, является членом «Клуба Сердец».

2. Ни один мужчина не может быть членом «Клуба Сердец», если нет хотя бы одного другого клуба, членом которого он не состоит.

3. Если взять любой клуб в городе, то все мужчины, не являющиеся членами этого клуба, влюблены во всех женщин в «Клубе Сердец».

— Итак, — продолжал Шалтай-Болтай, — Лилиан — жительница этого городка, но нам неизвестно, является ли она членом «Клуба Сердец». Ричард тоже житель этого городка, и мы также не знаем, является ли он членом «Клуба Сердец». Можно ли, исходя из этого, сказать, любит Ричард Лилиан или не любит?

— Я даже представить не могу, как! — ответила Алиса.

— Это потому, что ты не думаешь! — строго отчитал ее Шалтай-Болтай.

— А между тем, девочка, — продолжал он, — ответить на этой вопрос не так сложно. На самом деле... Нет, ты, конечно же, не поверишь в то, что я сейчас тебе скажу! А скажу я тебе вот что... О, могу себе представить, какое у тебя будет удивленное лицо! Так вот, я тебе скажу сейчас следующее: в этом городке все мужчины должны любить всех женщин!

Алису такое заявление несколько озадачило.

— Я пока не могу понять, как вы пришли к такому выводу, — медленно произнесла она.

— Итак, девочка, из первой предпосылки мы делаем вывод о том, что каждая женщина в городке должна состоять членом «Клуба Сердец». Почему? Сейчас объясню. Возьмем любую жительницу городка. Одно из двух: она либо состоит членом всех клубов, либо не состоит членом всех клубов. Если предположить

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату